RESUMEN
AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species. We compiled movement data from 1,596 individuals across 79 taxa collected using a continental passive acoustic telemetry network of acoustic receivers to assess allometric scaling of activity space. We found that ectothermic marine taxa do exhibit allometric scaling for activity space, with an overall scaling exponent of 0.64. However, body mass alone explained only 35% of the variation, with the remaining variation best explained by trophic position for teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponents among teleost fish species (0.07) than sharks (0.96), rays (0.55), and marine reptiles (0.57). The allometric scaling relationship and scaling exponents for the marine taxonomic groups examined were lower than those reported from studies that had collated both marine and terrestrial species data derived using various tracking methods. We propose that these disparities arise because previous work integrated summarized data across many studies that used differing methods for collecting and quantifying activity space, introducing considerable uncertainty into slope estimates. Our findings highlight the benefit of using large-scale, coordinated animal biotelemetry networks to address cross-taxa evolutionary and ecological questions.
Asunto(s)
Organismos Acuáticos , Peces , Animales , Fenómenos de Retorno al Lugar HabitualRESUMEN
Birds, mammals, and certain fishes, including tunas, opahs and lamnid sharks, are endothermic, conserving internally generated, metabolic heat to maintain body or tissue temperatures above that of the environment. Bluefin tunas are commercially important fishes worldwide, and some populations are threatened. They are renowned for their endothermy, maintaining elevated temperatures of the oxidative locomotor muscle, viscera, brain and eyes, and occupying cold, productive high-latitude waters. Less cold-tolerant tunas, such as yellowfin tuna, by contrast, remain in warm-temperate to tropical waters year-round, reproducing more rapidly than most temperate bluefin tuna populations, providing resiliency in the face of large-scale industrial fisheries. Despite the importance of these traits to not only fisheries but also habitat utilization and responses to climate change, little is known of the genetic processes underlying the diversification of tunas. In collecting and analyzing sequence data across 29,556 genes, we found that parallel selection on standing genetic variation is associated with the evolution of endothermy in bluefin tunas. This includes two shared substitutions in genes encoding glycerol-3 phosphate dehydrogenase, an enzyme that contributes to thermogenesis in bumblebees and mammals, as well as four genes involved in the Krebs cycle, oxidative phosphorylation, ß-oxidation, and superoxide removal. Using phylogenetic techniques, we further illustrate that the eight Thunnus species are genetically distinct, but found evidence of mitochondrial genome introgression across two species. Phylogeny-based metrics highlight conservation needs for some of these species.
Asunto(s)
Evolución Biológica , Termogénesis/genética , Atún/genética , Animales , Especies en Peligro de Extinción , Genoma Mitocondrial , Hibridación Genética , Mutación , Selección Genética , Atún/metabolismoRESUMEN
Fishing represents a major problem for conservation of chondrichthyans, with a quarter of all species being overexploited. School sharks, Galeorhinus galeus, are targeted by commercial fisheries in Australia and New Zealand. The Australian stock has been depleted to below 20% of its virgin biomass, and the species is recorded as Conservation Dependent within Australia. Individuals are known to move between both countries, but it is disputed whether the stocks are reproductively linked. Accurate and unbiased determination of stock and population connectivity is crucial to inform effective management. In this study, we assess the genetic composition and population connectivity between Australian and New Zealand school sharks using genome-wide SNPs, while accounting for non-random kin sampling. Between 2009 and 2013, 88 neonate and juvenile individuals from Tasmanian and New Zealand nurseries were collected and genotyped. Neutral loci were analyzed to detect fine-scale signals of reproductive connectivity. Seven full-sibling groups were identified and removed for unbiased analysis. Based on 6,587 neutral SNPs, pairwise genetic differentiation from Tasmanian and New Zealand neonates was non-significant (F ST = 0.0003, CI95 = [-0.0002, 0.0009], p = 0.1163; D est = 0.0006 ± 0.0002). This pattern was supported by clustering results. In conclusion, we show a significant effect of non-random sampling of kin and identify fine-scale reproductive connectivity between Australian and New Zealand school sharks. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.pd8612j.
RESUMEN
Understanding how aquatic species respond to extremes of DO and temperature is crucial for determining how they will be affected by climate change, which is predicted to increasingly expose them to levels beyond their optima. In this study we used novel animal-borne DO, temperature and depth sensors to determine the effect of extremes of DO and temperature on the vertical habitat use of Atlantic salmon Salmo salar in aquaculture cages. Salmon showed a preference for temperatures around 16.5 to 17.5 °C, however, selection of preferred temperatures was trumped by active avoidance of low DO (<35% saturation) at the bottom of the cage. In addition to low DO, salmon also avoided warm surface waters (>20.1 °C), which led to a considerable contraction in the available vertical habitat. Despite their avoidance behavior, fish spent a large amount of time in waters with suboptimal DO (<60% saturation). These results show that vertical habitat contraction could likely be a significant consequence of climate change if the reduction in DO outpaces the increase in hypoxia tolerance through local adaptation. They furthermore highlight that site-specific environmental conditions and stock-specific tolerance thresholds may need to be considered when determining stocking densities.