RESUMEN
Since the 1950s, industrial fisheries have expanded globally, as fishing vessels are required to travel further afield for fishing opportunities. Technological advancements and fishery subsidies have granted ever-increasing access to populations of sharks, tunas, billfishes, and other predators. Wilderness refuges, defined here as areas beyond the detectable range of human influence, are therefore increasingly rare. In order to achieve marine resources sustainability, large no-take marine protected areas (MPAs) with pelagic components are being implemented. However, such conservation efforts require knowledge of the critical habitats for predators, both across shallow reefs and the deeper ocean. Here, we fill this gap in knowledge across the Indo-Pacific by using 1,041 midwater baited videos to survey sharks and other pelagic predators such as rainbow runner (Elagatis bipinnulata), mahi-mahi (Coryphaena hippurus), and black marlin (Istiompax indica). We modeled three key predator community attributes: vertebrate species richness, mean maximum body size, and shark abundance as a function of geomorphology, environmental conditions, and human pressures. All attributes were primarily driven by geomorphology (35%-62% variance explained) and environmental conditions (14%-49%). While human pressures had no influence on species richness, both body size and shark abundance responded strongly to distance to human markets (12%-20%). Refuges were identified at more than 1,250 km from human markets for body size and for shark abundance. These refuges were identified as remote and shallow seabed features, such as seamounts, submerged banks, and reefs. Worryingly, hotpots of large individuals and of shark abundance are presently under-represented within no-take MPAs that aim to effectively protect marine predators, such as the British Indian Ocean Territory. Population recovery of predators is unlikely to occur without strategic placement and effective enforcement of large no-take MPAs in both coastal and remote locations.
Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Conducta Predatoria/fisiología , Animales , Tamaño Corporal , Arrecifes de Coral , Ecosistema , Abastecimiento de Alimentos/métodos , Océano Pacífico , Alimentos Marinos , Vida SilvestreRESUMEN
[This corrects the article DOI: 10.1371/journal.pbio.3000366.].
RESUMEN
Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño-Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events.
Asunto(s)
Ecosistema , Peces/crecimiento & desarrollo , Clima Tropical , Animales , Cambio Climático , Océanos y Mares , Movimientos del Agua , Australia OccidentalRESUMEN
Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across multiple maritime jurisdictions, and our approach provides a simple for method for testing the effectiveness of MPAs.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Tiburones , Animales , Australia , EcologíaRESUMEN
The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation.
Asunto(s)
Cambio Climático , Ecosistema , El Niño Oscilación del Sur , Animales , Antozoos , Australia , ClimaRESUMEN
Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries.
Asunto(s)
Cambio Climático , Peces/crecimiento & desarrollo , Modelos Teóricos , Membrana Otolítica/crecimiento & desarrollo , Animales , Temperatura , Agua , Australia OccidentalRESUMEN
Animal body-size variation influences multiple processes in marine ecosystems, but habitat heterogeneity has prevented a comprehensive assessment of size across pelagic (midwater) and benthic (seabed) systems along anthropic gradients. In this work, we derive fish size indicators from 17,411 stereo baited-video deployments to test for differences between pelagic and benthic responses to remoteness from human pressures and effectiveness of marine protected areas (MPAs). From records of 823,849 individual fish, we report divergent responses between systems, with pelagic size structure more profoundly eroded near human markets than benthic size structure, signifying greater vulnerability of pelagic systems to human pressure. Effective protection of benthic size structure can be achieved through MPAs placed near markets, thereby contributing to benthic habitat restoration and the recovery of associated fishes. By contrast, recovery of the world's largest and most endangered fishes in pelagic systems requires the creation of highly protected areas in remote locations, including on the High Seas, where protection efforts lag.
Asunto(s)
Tamaño Corporal , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Peces , Animales , Océanos y MaresRESUMEN
Colour change is used by a wide range of animals. It is used for intra- and interspecific communication and crypsis, and can occur on morphological and physiological levels. Bony fish employ rapid physiological colour change and display various types of patterns and colouration (colour phases) useful for aposematic and cryptic purposes. Using an existing database of benthic stereo-baited remote underwater video systems from two locations in Western Australia, we tested whether the frequency of colour phases of emperors, Lethrinidae, varied by species. We described colour phases and rapid physiological colour change in 16 species of lethrinids, and related occurrences of colour change to feeding activity and life stages. Dark and light colour phases were observed in nine of the 16 evaluated species of which seven also displayed physiological colour change. Frequency of colour phases varied between species, suggesting that the display of different dark patterns may be especially important for certain species. Both juveniles and adults showed the ability to change between different colour patterns. The change into a mottled pattern mainly occurred while feeding or when approaching to feed, suggesting that it may be triggered by feeding and the associated decrease in environmental awareness. Colour change is a commonly observed strategy in lethrinids and may have evolved as an adaptation for increased foraging success or to reduce aggression from conspecifics. Physiological colour change allows lethrinids to quickly adapt to various cues from the environment and can therefore be considered a versatile physiological mechanism in this family.
RESUMEN
Mutualistic and commensal interactions can have significant positive impacts on animal fitness and survival. However, behavioural interactions between pelagic animals living in offshore oceanic environments are little studied. Parasites can negatively effect the fitness of their hosts by draining resources and diverting energy from growth, reproduction, and other bodily functions. Pelagic fishes are hosts to a diverse array of parasites, however their environment provides few options for removal. Here we provide records of scraping behaviour of several pelagic teleost species, a behaviour that is likely used for parasite removal. These records span three ocean basins and, to the best of our knowledge, include the first records of scraping interactions involving tunas, blue sharks, and mako sharks as well as the first records of intraspecific scraping. We found that scrapers preferred scraping their head, eyes, gill cover, and lateral surfaces, areas where parasites are commonly found and where damage would likely have a substantial impact on fitness. Scraper species varied in their scraping preferences with tunas scraping mostly on the posterior caudal margins of sharks and occasionally conspecifics, while rainbow runner scraped in more varied locations on both sharks and conspecifics. Lengths of scrapers and scrapees were positively correlated and fish scraping on sharks were larger than those scraping on conspecifics, suggesting that risk of predation may be a limiting factor. We show that pelagic teleosts prefer to scrape on sharks rather than conspecifics or other teleosts and suggest that this behaviour may have a positive impact on teleost fitness by reducing parasite loads. The decline of shark populations in the global ocean and the reduction in mean size of many species may limit these interactions, eroding possible fitness benefits associated with this behaviour, and consequently placing more pressure on already highly targeted and vulnerable species.
Asunto(s)
Parásitos , Tiburones , Animales , Peces , Océanos y Mares , AtúnRESUMEN
The decommissioning of offshore oil and gas platforms typically involves removing some or all of the associated infrastructure and the consequent destruction of the associated marine ecosystem that has developed over decades. There is increasing evidence of the important ecological role played by offshore platforms. Concepts such as novel ecosystems allow stakeholders to consider the ecological role played by each platform in the decommissioning process. This study focused on the Wandoo field in Northwest Australia as a case study for the application of the novel ecosystem concept to the decommissioning of offshore platforms. Stereo-baited remote underwater video systems were used to assess the habitat composition and fish communities at Wandoo, as well as two control sites: a sandy one that resembled the Wandoo site pre-installation, and one characterized by a natural reef as a control for natural hard substrate and vertical relief. We found denser macrobenthos habitat at the Wandoo site than at either of the control sites, which we attributed to the exclusion of seabed trawling around the Wandoo infrastructure. We also found that the demersal and pelagic taxonomic assemblages at Wandoo more closely resemble those at a natural reef than those which would likely have been present pre-installation, but these assemblages are still unique in a regional context. The demersal assemblage is characterized by reef-associated species with higher diversity than those at the sand control and natural reef control sites, with the pelagic community characterized by species associated with oil platforms in other regions. These findings suggest that a novel ecosystem has emerged in the Wandoo field. It is likely that many of the novel qualities of this ecosystem would be lost under decommissioning scenarios that involve partial or complete removal. This study provides an example for classifying offshore platforms as novel ecosystems.
RESUMEN
Spatial and temporal distribution of seabird transiting and foraging at sea is an important consideration for marine conservation planning. Using at-sea observations of seabirds (n = 317), collected during the breeding season from 2012 to 2016, we built boosted regression tree (BRT) models to identify relationships between numerically dominant seabird species (red-footed booby, brown noddy, white tern, and wedge-tailed shearwater), geomorphology, oceanographic variability, and climate oscillation in the Chagos Archipelago. We documented positive relationships between red-footed booby and wedge-tailed shearwater abundance with the strength in the Indian Ocean Dipole, as represented by the Dipole Mode Index (6.7% and 23.7% contribution, respectively). The abundance of red-footed boobies, brown noddies, and white terns declined abruptly with greater distance to island (17.6%, 34.1%, and 41.1% contribution, respectively). We further quantified the effects of proximity to rat-free and rat-invaded islands on seabird distribution at sea and identified breaking point distribution thresholds. We detected areas of increased abundance at sea and habitat use-age under a scenario where rats are eradicated from invaded nearby islands and recolonized by seabirds. Following rat eradication, abundance at sea of red-footed booby, brown noddy, and white terns increased by 14%, 17%, and 3%, respectively, with no important increase detected for shearwaters. Our results have implication for seabird conservation and island restoration. Climate oscillations may cause shifts in seabird distribution, possibly through changes in regional productivity and prey distribution. Invasive species eradications and subsequent island recolonization can lead to greater access for seabirds to areas at sea, due to increased foraging or transiting through, potentially leading to distribution gains and increased competition. Our approach predicting distribution after successful eradications enables anticipatory threat mitigation in these areas, minimizing competition between colonies and thereby maximizing the risk of success and the conservation impact of eradication programs.
RESUMEN
Reef sharks are vulnerable predators experiencing severe population declines mainly due to overexploitation. However, beyond direct exploitation, human activities can produce indirect or sub-lethal effects such as behavioral alterations. Such alterations are well known for terrestrial fauna but poorly documented for marine species. Using an extensive sampling of 367 stereo baited underwater videos systems, we show modifications in grey reef shark (Carcharhinus amblyrhynchos) occurrence and feeding behavior along a marked gradient of isolation from humans across the New Caledonian archipelago (South-Western Pacific). The probability of occurrence decreased by 68.9% between wilderness areas (more than 25 hours travel time from the capital city) and impacted areas while the few individuals occurring in impacted areas exhibited cautious behavior. We also show that only large no-entry reserves (above 150 km²) can protect the behavior of grey reef sharks found in the wilderness. Influencing the fitness, human linked behavioral alterations should be taken into account for management strategies to ensure the persistence of populations.
Asunto(s)
Conducta Animal , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecosistema , Biología Marina , Conducta Predatoria , Tiburones/fisiología , Animales , Sedimentos Geológicos , Densidad de PoblaciónRESUMEN
Postwar growth of industrial fisheries catch to its peak in 1996 was driven by increasing fleet capacity and geographical expansion. An investigation of the latter, using spatially allocated reconstructed catch data to quantify "mean distance to fishing grounds," found global trends to be dominated by the expansion histories of a small number of distant-water fishing countries. While most countries fished largely in local waters, Taiwan, South Korea, Spain, and China rapidly increased their mean distance to fishing grounds by 2000 to 4000 km between 1950 and 2014. Others, including Japan and the former USSR, expanded in the postwar decades but then retrenched from the mid-1970s, as access to other countries' waters became increasingly restricted with the advent of exclusive economic zones formalized in the 1982 United Nations Convention on the Law of the Sea. Since 1950, heavily subsidized fleets have increased the total fished area from 60% to more than 90% of the world's oceans, doubling the average distance traveled from home ports but catching only one-third of the historical amount per kilometer traveled. Catch per unit area has declined by 22% since the mid-1990s, as fleets approach the limits of geographical expansion. Allowing these trends to continue threatens the bioeconomic sustainability of fisheries globally.
Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Peces/crecimiento & desarrollo , Animales , Geografía , Océanos y Mares , Dinámica PoblacionalRESUMEN
Marine fisheries are in crisis, requiring twice the fishing effort of the 1950s to catch the same quantity of fish, and with many fleets operating beyond economic or ecological sustainability. A possible consequence of diminishing returns in this race to fish is serious labour abuses, including modern slavery, which exploit vulnerable workers to reduce costs. Here, we use the Global Slavery Index (GSI), a national-level indicator, as a proxy for modern slavery and labour abuses in fisheries. GSI estimates and fisheries governance are correlated at the national level among the major fishing countries. Furthermore, countries having documented labour abuses at sea share key features, including higher levels of subsidised distant-water fishing and poor catch reporting. Further research into modern slavery in the fisheries sector is needed to better understand how the issue relates to overfishing and fisheries policy, as well as measures to reduce risk in these labour markets.
Asunto(s)
Esclavización , Explotaciones Pesqueras , Animales , Empleo , Peces , Geografía , Internacionalidad , Océanos y Mares , Análisis de Componente Principal , Factores de Riesgo , Alimentos MarinosRESUMEN
Reliable abundance estimates for species are fundamental in ecology, fisheries, and conservation. Consequently, predictive models able to provide reliable estimates for un- or poorly-surveyed locations would prove a valuable tool for management. Based on commonly used environmental and physical predictors, we developed predictive models of total fish abundance and of abundance by fish family for ten representative taxonomic families for the Great Barrier Reef (GBR) using multiple temporal scenarios. We then tested if models developed for the GBR (reference system) could predict fish abundances at Ningaloo Reef (NR; target system), i.e., if these GBR models could be successfully transferred to NR. Models of abundance by fish family resulted in improved performance (e.g., 44.1%
RESUMEN
Tuna, billfish, and oceanic sharks [hereafter referred to as 'mobile oceanic fishes and sharks' (MOFS)] are characterised by conservative life-history strategies and highly migratory behaviour across large, transnational ranges. Intense exploitation over the past 65 years by a rapidly expanding high-seas fishing fleet has left many populations depleted, with consequences at the ecosystem level due to top-down control and trophic cascades. Despite increases in both CITES and IUCN Red Listings, the demographic trajectories of oceanic sharks and billfish are poorly quantified and resolved at geographic and population levels. Amongst MOFS trajectories, those of tunas are generally considered better understood, yet several populations remain either overfished or of unknown status. MOFS population trends and declines therefore remain contentious, partly due to challenges in deriving accurate abundance and biomass indices. Two major management strategies are currently recognised to address conservation issues surrounding MOFS: (i) internationally ratified legal frameworks and their associated regional fisheries management organisations (RFMOs); and (ii) spatio-temporal fishery closures, including no-take marine protected areas (MPAs). In this context, we first review fishery-dependent studies relying on data derived from catch records and from material accessible through fishing extraction, under the umbrella of RFMO-administrated management. Challenges in interpreting catch statistics notwithstanding, we find that fishery-dependent studies have enhanced the accuracy of biomass indices and the management strategies they inform, by addressing biases in reporting and non-random effort, and predicting drivers of spatial variability across meso- and oceanic scales in order to inform stock assessments. By contrast and motivated by the increase in global MPA coverage restricting extractive activities, we then detail ways in which fishery-independent methods are increasingly improving and steering management by exploring facets of MOFS ecology thus far poorly grasped. Advances in telemetry are increasingly used to explore ontogenic and seasonal movements, and provide means to consider MOFS migration corridors and residency patterns. The characterisation of trophic relationships and prey distribution through biochemical analysis and hydro-acoustics surveys has enabled the tracking of dietary shifts and mapping of high-quality foraging grounds. We conclude that while a scientific framework is available to inform initial design and subsequent implementation of MPAs, there is a shortage in the capacity to answer basic but critical questions about MOFS ecology (who, when, where?) required to track populations non-extractively, thereby presenting a barrier to assessing empirically the performance of MPA-based management for MOFS. This sampling gap is exacerbated by the increased establishment of large (>10000 km2 ) and very large MPAs (VLMPAs, >100000 km2 ) - great expanses of ocean lacking effective monitoring strategies and survey regimes appropriate to those scales. To address this shortcoming, we demonstrate the use of a non-extractive protocol to measure MOFS population recovery and MPA efficiency. We further identify technological avenues for monitoring at the VLMPA scale, through the use of spotter planes, drones, satellite technology, and horizontal acoustics, and highlight their relevance to the ecosystem-based framework of MOFS management.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras , Peces , Tiburones , Animales , Ecosistema , Océanos y MaresRESUMEN
Reef sharks may influence the foraging behaviour of mesopredatory teleosts on coral reefs via both risk effects and competitive exclusion. We used a "natural experiment" to test the hypothesis that the loss of sharks on coral reefs can influence the diet and body condition of mesopredatory fishes by comparing two remote, atoll-like reef systems, the Rowley Shoals and the Scott Reefs, in northwestern Australia. The Rowley Shoals are a marine reserve where sharks are abundant, whereas at the Scott Reefs numbers of sharks have been reduced by centuries of targeted fishing. On reefs where sharks were rare, the gut contents of five species of mesopredatory teleosts largely contained fish while on reefs with abundant sharks, the same mesopredatory species consumed a larger proportion of benthic invertebrates. These measures of diet were correlated with changes in body condition, such that the condition of mesopredatory teleosts was significantly poorer on reefs with higher shark abundance. Condition was defined as body weight, height and width for a given length and also estimated via several indices of condition. Due to the nature of natural experiments, alternative explanations cannot be discounted. However, the results were consistent with the hypothesis that loss of sharks may influence the diet and condition of mesopredators and by association, their fecundity and trophic role. Regardless of the mechanism (risk effects, competitive release, or other), our findings suggest that overfishing of sharks has the potential to trigger trophic cascades on coral reefs and that further declines in shark populations globally should be prevented to protect ecosystem health.
Asunto(s)
Arrecifes de Coral , Cipriniformes/fisiología , Conducta Alimentaria/fisiología , Perciformes/fisiología , Tiburones/fisiología , Animales , Australia , Bivalvos/fisiología , Braquiuros/fisiología , Conservación de los Recursos Naturales , Dieta , Ecosistema , Femenino , Cadena Alimentaria , Gastrópodos/fisiología , MasculinoRESUMEN
We investigated drivers of reef shark demography across a large and isolated marine protected area, the British Indian Ocean Territory Marine Reserve, using stereo baited remote underwater video systems. We modelled shark abundance against biotic and abiotic variables at 35 sites across the reserve and found that the biomass of low trophic order fish (specifically planktivores) had the greatest effect on shark abundance, although models also included habitat variables (depth, coral cover and site type). There was significant variation in the composition of the shark assemblage at different atolls within the reserve. In particular, the deepest habitat sampled (a seamount at 70-80m visited for the first time in this study) recorded large numbers of scalloped hammerhead sharks (Sphyrna lewini) not observed elsewhere. Size structure of the most abundant and common species, grey reef sharks (Carcharhinus amblyrhynchos), varied with location. Individuals at an isolated bank were 30% smaller than those at the main atolls, with size structure significantly biased towards the size range for young of year (YOY). The 18 individuals judged to be YOY represented the offspring of between four and six females, so, whilst inconclusive, these data suggest the possible use of a common pupping site by grey reef sharks. The importance of low trophic order fish biomass (i.e. potential prey) in predicting spatial variation in shark abundance is consistent with other studies both in marine and terrestrial systems which suggest that prey availability may be a more important predictor of predator distribution than habitat suitability. This result supports the need for ecosystem level rather than species-specific conservation measures to support shark recovery. The observed spatial partitioning amongst sites for species and life-stages also implies the need to include a diversity of habitats and reef types within a protected area for adequate protection of reef-associated shark assemblages.
Asunto(s)
Arrecifes de Coral , Tiburones , Animales , Demografía , Océano Índico , Densidad de PoblaciónRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0177374.].
RESUMEN
Globally, farmed seaweed production is expanding rapidly in shallow marine habitats. While seaweed farming provides vital income to millions of artisanal farmers, it can negatively impact shallow coral reef and seagrass habitats. However, seaweed farming may also potentially provide food subsidies for herbivorous reef fish such as the Siganidae, a valuable target family, resulting in increased catch. Comparisons of reef fish landings across the central Philippines revealed that the catch of siganids was positively correlated to farmed seaweed production whilst negatively correlated to total reef fish catch over the same period of time. We tested the generality of this pattern by analysing seaweed production, siganid catch, and reef fish catch for six major seaweed-producing countries in the tropics. We hypothesized that increased seaweed production would correspond with increased catch of siganids but not other reef fish species. Analysis of the global data showed a positive correlation between farmed seaweeds and siganids in Southeast Asia (Indonesia, Malaysia, and the Philippines) but not Africa (Tanzania and Zanzibar), or the Western Pacific (Fiji). In Southeast Asia, siganid catch increased disproportionately faster with seaweed production than did reef fish catch. Low continuity, sporadic production and smaller volumes of seaweed farming may explain the differences.