Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Pathog ; 16(11): e1008943, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137810

RESUMEN

Respiratory syncytial virus (RSV) is a global public health burden for which no licensed vaccine exists. To aid vaccine development via increased understanding of the protective antibody response to RSV prefusion glycoprotein F (PreF), we performed structural and functional studies using the human neutralizing antibody (nAb) RSB1. The crystal structure of PreF complexed with RSB1 reveals a conformational, pre-fusion specific site V epitope with a unique cross-protomer binding mechanism. We identify shared structural features between nAbs RSB1 and CR9501, elucidating for the first time how diverse germlines obtained from different subjects can develop convergent molecular mechanisms for recognition of the same PreF site of vulnerability. Importantly, RSB1-like nAbs were induced upon immunization with PreF in naturally-primed cattle. Together, this work reveals new details underlying the immunogenicity of site V and further supports PreF-based vaccine development efforts.


Asunto(s)
Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Inmunogenicidad Vacunal/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Bovinos , Cristalografía por Rayos X , Humanos , Inmunización , Modelos Estructurales
2.
Proteins ; 87(7): 579-587, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30883881

RESUMEN

Human noroviruses are the primary cause of outbreaks of acute gastroenteritis worldwide. The problem is further compounded by the current lack of norovirus-specific antivirals or vaccines. Noroviruses have a single-stranded, positive sense 7 to 8 kb RNA genome which encodes a polyprotein precursor that is processed by a virus-encoded 3C-like cysteine protease (NV 3CLpro) to generate at least six mature nonstructural proteins. Processing of the polyprotein is essential for virus replication, consequently, NV 3CLpro has emerged as an attractive target for the discovery of norovirus therapeutics and prophylactics. We have recently described the structure-based design of macrocyclic transition state inhibitors of NV 3CLpro. In order to gain insight and understanding into the interaction of macrocyclic inhibitors with the enzyme, as well as probe the effect of ring size on pharmacological activity and cellular permeability, additional macrocyclic inhibitors were synthesized and high resolution cocrystal structures determined. The results of our studies tentatively suggest that the macrocyclic scaffold may hamper optimal binding to the active site by impeding concerted cross-talk between the S2 and S4 subsites.


Asunto(s)
Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Compuestos Macrocíclicos/farmacología , Norovirus/enzimología , Animales , Infecciones por Caliciviridae/tratamiento farmacológico , Infecciones por Caliciviridae/virología , Dominio Catalítico/efectos de los fármacos , Línea Celular , Cristalografía por Rayos X , Proteasas de Cisteína/química , Inhibidores de Cisteína Proteinasa/química , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/virología , Humanos , Compuestos Macrocíclicos/química , Ratones , Modelos Moleculares , Norovirus/química , Norovirus/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Células RAW 264.7
3.
J Biol Chem ; 292(40): 16677-16687, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28842484

RESUMEN

Numerous Gram-negative pathogens infect eukaryotes and use the type III secretion system (T3SS) to deliver effector proteins into host cells. One important T3SS feature is an extracellular needle with an associated tip complex responsible for assembly of a pore-forming translocon in the host cell membrane. Shigella spp. cause shigellosis, also called bacillary dysentery, and invade colonic epithelial cells via the T3SS. The tip complex of Shigella flexneri contains invasion plasmid antigen D (IpaD), which initially regulates secretion and provides a physical platform for the translocon pore. The tip complex represents a promising therapeutic target for many important T3SS-containing pathogens. Here, in an effort to further elucidate its function, we created a panel of single-VH domain antibodies (VHHs) that recognize distinct epitopes within IpaD. These VHHs recognized the in situ tip complex and modulated the infectious properties of Shigella Moreover, structural elucidation of several IpaD-VHH complexes provided critical insights into tip complex formation and function. Of note, one VHH heterodimer could reduce Shigella hemolytic activity by >80%. Our observations along with previous findings support the hypothesis that the hydrophobic translocator (IpaB in Shigella) likely binds to a region within the tip protein that is structurally conserved across all T3SS-possessing pathogens, suggesting potential therapeutic avenues for managing infections by these pathogens.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Sistemas de Secreción Bacterianos/inmunología , Epítopos/inmunología , Shigella flexneri/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Camélidos del Nuevo Mundo , Evolución Molecular Dirigida , Epítopos/genética , Shigella flexneri/genética
4.
J Biol Chem ; 291(41): 21335-21349, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27539848

RESUMEN

Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptor cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling.


Asunto(s)
Contactinas , Complejos Multiproteicos , Proteínas del Tejido Nervioso , Tejido Nervioso/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Transducción de Señal/fisiología , Animales , Contactinas/química , Contactinas/genética , Contactinas/metabolismo , Humanos , Ratones , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo
5.
MAbs ; 16(1): 2362775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899735

RESUMEN

Over the past two decades, therapeutic antibodies have emerged as a rapidly expanding domain within the field of biologics. In silico tools that can streamline the process of antibody discovery and optimization are critical to support a pipeline that is growing more numerous and complex every year. High-quality structural information remains critical for the antibody optimization process, but antibody-antigen complex structures are often unavailable and in silico antibody docking methods are still unreliable. In this study, DeepAb, a deep learning model for predicting antibody Fv structure directly from sequence, was used in conjunction with single-point experimental deep mutational scanning (DMS) enrichment data to design 200 potentially optimized variants of an anti-hen egg lysozyme (HEL) antibody. We sought to determine whether DeepAb-designed variants containing combinations of beneficial mutations from the DMS exhibit enhanced thermostability and whether this optimization affected their developability profile. The 200 variants were produced through a robust high-throughput method and tested for thermal and colloidal stability (Tonset, Tm, Tagg), affinity (KD) relative to the parental antibody, and for developability parameters (nonspecific binding, aggregation propensity, self-association). Of the designed clones, 91% and 94% exhibited increased thermal and colloidal stability and affinity, respectively. Of these, 10% showed a significantly increased affinity for HEL (5- to 21-fold increase) and thermostability (>2.5C increase in Tm1), with most clones retaining the favorable developability profile of the parental antibody. Additional in silico tests suggest that these methods would enrich for binding affinity even without first collecting experimental DMS measurements. These data open the possibility of in silico antibody optimization without the need to predict the antibody-antigen interface, which is notoriously difficult in the absence of crystal structures.


Asunto(s)
Afinidad de Anticuerpos , Muramidasa , Muramidasa/química , Muramidasa/inmunología , Muramidasa/genética , Estabilidad Proteica , Humanos , Antígenos/inmunología , Antígenos/química , Animales , Simulación por Computador
6.
J Mol Biol ; 434(9): 167548, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35304125

RESUMEN

The tripartite protein complex produced by anthrax bacteria (Bacillus anthracis) is a member of the AB family of ß-barrel pore-forming toxins. The protective antigen (PA) component forms an oligomeric prepore that assembles on the host cell surface and serves as a scaffold for binding of lethal and edema factors. Following endocytosis, the acidic environment of the late endosome triggers a pH-induced conformational rearrangement to promote maturation of the PA prepore to a functional, membrane spanning pore that facilitates delivery of lethal and edema factors to the cytosol of the infected host. Here, we show that the dominant-negative D425A mutant of PA stalls anthrax pore maturation in an intermediate state at acidic pH. Our 2.7 Å cryo-EM structure of the intermediate state reveals structural rearrangements that involve constriction of the oligomeric pore combined with an intramolecular dissociation of the pore-forming module. In addition to defining the early stages of anthrax pore maturation, the structure identifies asymmetric conformational changes in the oligomeric pore that are influenced by the precise configuration of adjacent protomers.


Asunto(s)
Antígenos Bacterianos , Bacillus anthracis , Toxinas Bacterianas , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Bacillus anthracis/química , Bacillus anthracis/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Microscopía por Crioelectrón , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Mutación , Conformación Proteica
7.
Acta Crystallogr D Struct Biol ; 75(Pt 7): 628-638, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31282472

RESUMEN

Ncb5or (NADH-cytochrome b5 oxidoreductase), a cytosolic ferric reductase implicated in diabetes and neurological diseases, comprises three distinct domains, cytochrome b5 (b5) and cytochrome b5 reductase (b5R) domains separated by a CHORD-Sgt1 (CS) domain, and a novel 50-residue N-terminal region. Understanding how interdomain interactions in Ncb5or facilitate the shuttling of electrons from NAD(P)H to heme, and how the process compares with the microsomal b5 (Cyb5A) and b5R (Cyb5R3) system, is of interest. A high-resolution structure of the b5 domain (PDB entry 3lf5) has previously been reported, which exhibits substantial differences in comparison to Cyb5A. The structural characterization of a construct comprising the naturally fused CS and b5R domains with bound FAD and NAD+ (PDB entry 6mv1) or NADP+ (PDB entry 6mv2) is now reported. The structures reveal that the linker between the CS and b5R cores is more ordered than predicted, with much of it extending the ß-sandwich motif of the CS domain. This limits the flexibility between the two domains, which recognize one another via a short ß-sheet motif and a network of conserved side-chain hydrogen bonds, salt bridges and cation-π interactions. Notable differences in FAD-protein interactions in Ncb5or and Cyb5R3 provide insight into the selectivity for docking of their respective b5 redox partners. The structures also afford a structural explanation for the unusual ability of Ncb5or to utilize both NADH and NADPH, and represent the first examples of native, fully oxidized b5R family members in which the nicotinamide ring of NAD(P)+ resides in the active site. Finally, the structures, together with sequence alignments, show that the b5R domain is more closely related to single-domain Cyb5R proteins from plants, fungi and some protists than to Cyb5R3 from animals.


Asunto(s)
Citocromo-B(5) Reductasa/química , Citocromos b5/química , NADP/química , Proteínas Portadoras/química , Dominio Catalítico , Cristalización , Hemo/química , Humanos , Enlace de Hidrógeno , Cinética , Proteínas de la Membrana/química , Modelos Moleculares , Complejos Multiproteicos , NAD/química , Oxidación-Reducción , Proteínas de Unión a Fosfato , Conformación Proteica en Lámina beta , Dominios Proteicos , Proteínas Recombinantes/química
8.
Eur J Med Chem ; 143: 881-890, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29227928

RESUMEN

Acute nonbacterial gastroenteritis caused by noroviruses constitutes a global public health concern and a significant economic burden. There are currently no small molecule therapeutics or vaccines for the treatment of norovirus infections. A structure-guided approach was utilized in the design of a series of inhibitors of norovirus 3CL protease that embody an oxazolidinone ring as a novel design element for attaining optimal binding interactions. Low micromolar cell-permeable inhibitors that display anti-norovirus activity have been identified. The mechanism of action, mode of binding, and structural rearrangements associated with the interaction of the inhibitors and the enzyme were elucidated using X-ray crystallography.


Asunto(s)
Norovirus/enzimología , Oxazolidinonas/farmacología , Inhibidores de Proteasas/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Estructura Molecular , Oxazolidinonas/síntesis química , Oxazolidinonas/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Proteínas Virales/metabolismo
9.
Eur J Med Chem ; 150: 334-346, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29544147

RESUMEN

There are currently no approved vaccines or small molecule therapeutics available for the prophylaxis or treatment of Middle East Respiratory Syndrome coronavirus (MERS-CoV) infections. MERS-CoV 3CL protease is essential for viral replication; consequently, it is an attractive target that provides a potentially effective means of developing small molecule therapeutics for combatting MERS-CoV. We describe herein the structure-guided design and evaluation of a novel class of inhibitors of MERS-CoV 3CL protease that embody a piperidine moiety as a design element that is well-suited to exploiting favorable subsite binding interactions to attain optimal pharmacological activity and PK properties. The mechanism of action of the compounds and the structural determinants associated with binding were illuminated using X-ray crystallography.


Asunto(s)
Antivirales/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Diseño de Fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Piperidinas/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Animales , Antivirales/síntesis química , Antivirales/química , Gatos , Muerte Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Relación Dosis-Respuesta a Droga , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Modelos Moleculares , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad , Células Vero , Proteínas Virales/metabolismo
10.
Mol Immunol ; 92: 28-37, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29031045

RESUMEN

Immunoglobulin G (IgG) consists of four subclasses in humans: IgG1, IgG2, IgG3 and IgG4, which are highly conserved but have unique differences that result in subclass-specific effector functions. Though IgG1 is the most extensively studied IgG subclass, study of other subclasses is important to understand overall immune function and for development of new therapeutics. When compared to IgG1, IgG3 exhibits a similar binding profile to Fcγ receptors and stronger activation of complement. All IgG subclasses are glycosylated at N297, which is required for Fcγ receptor and C1q complement binding as well as maintaining optimal Fc conformation. We have determined the crystal structure of homogenously glycosylated human IgG3 Fc with a GlcNAc2Man5 (Man5) high mannose glycoform at 1.8Šresolution and compared its structural features with published structures from the other IgG subclasses. Although the overall structure of IgG3 Fc is similar to that of other subclasses, some structural perturbations based on sequence differences were revealed. For instance, the presence of R435 in IgG3 (and H435 in the other IgG subclasses) has been implicated to result in IgG3-specific properties related to binding to protein A, protein G and the neonatal Fc receptor (FcRn). The IgG3 Fc structure helps to explain some of these differences. Additionally, protein-glycan contacts observed in the crystal structure appear to correlate with IgG3 affinity for Fcγ receptors as shown by binding studies with IgG3 Fc glycoforms. Finally, this IgG3 Fc structure provides a template for further studies aimed at engineering the Fc for specific gain of function.


Asunto(s)
Glicoproteínas/química , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Manosa/química , Cristalografía por Rayos X , Glicoproteínas/genética , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Manosa/genética
11.
Eur J Med Chem ; 127: 41-61, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28038326

RESUMEN

Norovirus infections have a major impact on public health worldwide, yet there is a current dearth of norovirus-specific therapeutics and prophylactics. This report describes the discovery of a novel class of macrocyclic inhibitors of norovirus 3C-like protease, a cysteine protease that is essential for virus replication. SAR, structural, and biochemical studies were carried out to ascertain the effect of structure on pharmacological activity and permeability. Insights gained from these studies have laid a solid foundation for capitalizing on the therapeutic potential of the series of inhibitors described herein.


Asunto(s)
Diseño de Fármacos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/farmacología , Norovirus/enzimología , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Animales , Técnicas de Química Sintética , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Norovirus/efectos de los fármacos , Permeabilidad , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Conformación Proteica , Células RAW 264.7 , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/metabolismo
12.
Nat Commun ; 8: 14932, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368002

RESUMEN

Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanism placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.


Asunto(s)
Bacterias/enzimología , Inhibidores Enzimáticos/farmacología , Compuestos Macrocíclicos/farmacología , Péptidos/farmacología , Fosfoglicerato Mutasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Biocatálisis/efectos de los fármacos , Caenorhabditis elegans/enzimología , Coenzimas/metabolismo , Cristalografía por Rayos X , Cisteína/metabolismo , Compuestos Macrocíclicos/química , Modelos Moleculares , Péptidos/síntesis química , Péptidos/química , Fosfoglicerato Mutasa/química , Fosfoglicerato Mutasa/metabolismo , Filogenia , Conformación Proteica , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/metabolismo
13.
Eur J Med Chem ; 126: 502-516, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27914364

RESUMEN

Human noroviruses are the primary cause of epidemic and sporadic acute gastroenteritis. The worldwide high morbidity and mortality associated with norovirus infections, particularly among the elderly, immunocompromised patients and children, constitute a serious public health concern. There are currently no approved human vaccines or norovirus-specific small-molecule therapeutics or prophylactics. Norovirus 3CL protease has recently emerged as a potential therapeutic target for the development of anti-norovirus agents. We hypothesized that the S4 subsite of the enzyme may provide an effective means of designing potent and cell permeable inhibitors of the enzyme. We report herein the structure-guided exploration and exploitation of the S4 subsite of norovirus 3CL protease in the design and synthesis of effective inhibitors of the protease.


Asunto(s)
Diseño de Fármacos , Norovirus/enzimología , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Línea Celular , Humanos , Modelos Moleculares , Norovirus/efectos de los fármacos , Norovirus/fisiología , Permeabilidad , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/toxicidad , Conformación Proteica , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
14.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 4): 257-62, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27050257

RESUMEN

Nucleoid-associated proteins (NAPs) in prokaryotes play an important architectural role in DNA bending, supercoiling and DNA compaction. In addition to architectural roles, some NAPs also play regulatory roles in DNA replication and repair, and act as global transcriptional regulators in many bacteria. Bacteria encode multiple NAPs and some of them are even essential for survival. Streptococcus mutans, a dental pathogen, encodes one such essential NAP called histone-like protein (HLP). Here, the three-dimensional structure of S. mutans HLP has been determined to 1.9 Šresolution. The HLP structure is a dimer and shares a high degree of similarity with other bacterial NAPs, including HU. Since HLPs are essential for the survival of pathogenic streptococci, this structure determination is potentially beneficial for future drug development against these pathogens.


Asunto(s)
Proteínas Bacterianas/química , Histonas/química , Streptococcus mutans/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dimerización , Genes Bacterianos , Histonas/genética , Modelos Moleculares , Conformación Proteica , Homología de Secuencia de Aminoácido , Streptococcus mutans/genética
15.
J Med Chem ; 59(5): 1899-913, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26823007

RESUMEN

Human noroviruses are the primary causative agents of acute gastroenteritis and a pressing public health burden worldwide. There are currently no vaccines or small molecule therapeutics available for the treatment or prophylaxis of norovirus infections. Norovirus 3CL protease plays a vital role in viral replication by generating structural and nonstructural proteins via the cleavage of the viral polyprotein. Thus, molecules that inhibit the viral protease may have potential therapeutic value. We describe herein the structure-based design, synthesis, and in vitro and cell-based evaluation of the first class of oxadiazole-based, permeable macrocyclic inhibitors of norovirus 3CL protease.


Asunto(s)
Antivirales/farmacología , Permeabilidad de la Membrana Celular , Compuestos Macrocíclicos/farmacología , Norovirus/efectos de los fármacos , Norovirus/enzimología , Oxadiazoles/farmacología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/farmacología , Animales , Antivirales/síntesis química , Antivirales/química , Línea Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Ratones , Modelos Moleculares , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Relación Estructura-Actividad
16.
Eur J Med Chem ; 119: 300-18, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27235842

RESUMEN

Outbreaks of acute gastroenteritis caused by noroviruses constitute a public health concern worldwide. To date, there are no approved drugs or vaccines for the management and prophylaxis of norovirus infections. A potentially effective strategy for the development of norovirus therapeutics entails the discovery of inhibitors of norovirus 3CL protease, an enzyme essential for noroviral replication. We describe herein the structure-based design of the first class of permeable, triazole-based macrocyclic inhibitors of norovirus 3C-like protease, as well as pertinent X-ray crystallographic, biochemical, spectroscopic, and antiviral studies.


Asunto(s)
Diseño de Fármacos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Norovirus/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Triazoles/química , Técnicas de Química Sintética , Compuestos Macrocíclicos/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptido Hidrolasas/química , Permeabilidad , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Conformación Proteica
17.
J Med Chem ; 58(7): 3144-55, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25761614

RESUMEN

Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of antinorovirus therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection.


Asunto(s)
Norovirus/enzimología , Péptido Hidrolasas/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Proteínas Virales/química , Animales , Antivirales/química , Antivirales/farmacología , Línea Celular/efectos de los fármacos , Técnicas de Química Sintética , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/virología , Ratones Endogámicos BALB C , Modelos Moleculares , Norovirus/efectos de los fármacos , Norovirus/patogenicidad , Péptido Hidrolasas/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
18.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 4): 418-23, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699731

RESUMEN

The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Šresolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cristalografía por Rayos X/métodos , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Cristalización , Modelos Moleculares , Datos de Secuencia Molecular , Dominios PDZ , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA