Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 35(6): 1489-1506, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29617828

RESUMEN

The genetic basis of parallel evolution of similar species is of great interest in evolutionary biology. In the adaptive radiation of Lake Victoria cichlid fishes, sister species with either blue or red-back male nuptial coloration have evolved repeatedly, often associated with shallower and deeper water, respectively. One such case is blue and red-backed Pundamilia species, for which we recently showed that a young species pair may have evolved through "hybrid parallel speciation". Coalescent simulations suggested that the older species P. pundamilia (blue) and P. nyererei (red-back) admixed in the Mwanza Gulf and that new "nyererei-like" and "pundamilia-like" species evolved from the admixed population. Here, we use genome scans to study the genomic architecture of differentiation, and assess the influence of hybridization on the evolution of the younger species pair. For each of the two species pairs, we find over 300 genomic regions, widespread across the genome, which are highly differentiated. A subset of the most strongly differentiated regions of the older pair are also differentiated in the younger pair. These shared differentiated regions often show parallel allele frequency differences, consistent with the hypothesis that admixture-derived alleles were targeted by divergent selection in the hybrid population. However, two-thirds of the genomic regions that are highly differentiated between the younger species are not highly differentiated between the older species, suggesting independent evolutionary responses to selection pressures. Our analyses reveal how divergent selection on admixture-derived genetic variation can facilitate new speciation events.


Asunto(s)
Cíclidos/genética , Opsinas de los Conos/genética , Especiación Genética , Selección Genética , Simpatría , Animales , Femenino , Genoma , Genómica , Masculino , Recombinación Genética , Secuenciación Completa del Genoma
2.
Mol Ecol ; 26(1): 7-24, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27483035

RESUMEN

Ecological speciation is the evolution of reproductive isolation as a consequence of direct divergent natural selection or ecologically mediated divergent sexual selection. While the genomic signature of the former has been extensively studied in recent years, only few examples exist for genomic differentiation where environment-dependent sexual selection has played an important role. Here, we describe a very young (~90 years old) population of threespine sticklebacks exhibiting phenotypic and genomic differentiation between two habitats within the same pond. We show that differentiation among habitats is limited to male throat colour and nest type, traits known to be subject to sexual selection. Divergence in these traits mirrors divergence in much older benthic and limnetic stickleback species pairs from North American west coast lakes, which also occur in sympatry but are strongly reproductively isolated from each other. We demonstrate that in our population, differences in throat colour and breeding have been stable over a decade, but in contrast to North American benthic and limnetic stickleback species, these mating trait differences are not accompanied by divergence in morphology related to feeding, predator defence or swimming performance. Using genomewide SNP data, we find multiple genomic islands with moderate differentiation spread across several chromosomes, whereas the rest of the genome is undifferentiated. The islands contain potential candidate genes involved in visual perception of colour. Our results suggest that phenotypic and multichromosome genomic divergence of these morphs was driven by environment-dependent sexual selection, demonstrating incipient speciation after only a few decades of divergence in sympatry.


Asunto(s)
Especiación Genética , Pigmentación , Selección Genética , Smegmamorpha/genética , Smegmamorpha/fisiología , Animales , Color , Ecología , Islas Genómicas , Masculino , América del Norte , Fenotipo , Polimorfismo de Nucleótido Simple , Simpatría
3.
Trends Ecol Evol ; 38(7): 631-642, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36870806

RESUMEN

A recurring feature of oceanic archipelagos is the presence of adaptive radiations that generate endemic, species-rich clades that can offer outstanding insight into the links between ecology and evolution. Recent developments in evolutionary genomics have contributed towards solving long-standing questions at this interface. Using a comprehensive literature search, we identify studies spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find that most of these radiations have not yet been investigated from an evolutionary genomics perspective. Our review reveals different gaps in knowledge related to the lack of implementation of genomic approaches, as well as undersampled taxonomic and geographic areas. Filling those gaps with the required data will help to deepen our understanding of adaptation, speciation, and other evolutionary processes.


Asunto(s)
Evolución Biológica , Especiación Genética , Filogenia , Ecología , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA