Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 22(12): 1492-1498, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783942

RESUMEN

Material surfaces encompass structural and chemical discontinuities that often lead to the loss of the property of interest in so-called dead layers. It is particularly problematic in nanoscale oxide electronics, where the integration of strongly correlated materials into devices is obstructed by the thickness threshold required for the emergence of their functionality. Here we report the stabilization of ultrathin out-of-plane ferroelectricity in oxide heterostructures through the design of an artificial flux-closure architecture. Inserting an in-plane-polarized ferroelectric epitaxial buffer provides the continuity of polarization at the interface; despite its insulating nature, we observe the emergence of polarization in our out-of-plane-polarized model of ferroelectric BaTiO3 from the very first unit cell. In BiFeO3, the flux-closure approach stabilizes a 251° domain wall. Its unusual chirality is probably associated with the ferroelectric analogue to the Dzyaloshinskii-Moriya interaction. We, thus, see that in an adaptively engineered geometry, the depolarizing-field-screening properties of an insulator can even surpass those of a metal and be a source of functionality. This could be a useful insight on the road towards the next generation of oxide electronics.

2.
Phys Rev Lett ; 124(11): 117401, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32242728

RESUMEN

It has recently been indicated that the hexagonal manganites exhibit Higgs- and Goldstone-like phonon modes that modulate the amplitude and phase of their primary order parameter. Here, we describe a mechanism by which a silent Goldstone-like phonon mode can be coherently excited, which is based on nonlinear coupling to an infrared-active Higgs-like phonon mode. Using a combination of first-principles calculations and phenomenological modeling, we describe the coupled Higgs-Goldstone dynamics in response to the excitation with a terahertz pulse. Besides theoretically demonstrating coherent control of crystallographic Higgs and Goldstone excitations, we show that the previously inaccessible silent phonon modes can be excited coherently with this mechanism.

3.
Phys Rev Lett ; 123(12): 127601, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31633948

RESUMEN

The recently proposed dynamical multiferroic effect describes the generation of magnetization from temporally varying electric polarization. Here, we show that the effect can lead to a magnetic field at moving ferroelectric domain walls, where the rearrangement of ions corresponds to a rotation of ferroelectric polarization in time. We develop an expression for the dynamical magnetic field, and calculate the relevant parameters for the example of 90° and 180° domain walls, as well as for polar skyrmions, in BaTiO_{3}, using a combination of density functional theory and phenomenological modeling. We find that the magnetic field reaches the order of several µT at the center of the wall, and we propose two experiments to measure the effect with nitrogen-vacancy center magnetometry.

4.
ACS Appl Mater Interfaces ; 15(14): 18482-18492, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36996320

RESUMEN

Improper ferroelectrics are expected to be more robust than conventional ferroelectrics against depolarizing field effects and to exhibit a much-desired absence of critical thickness. Recent studies, however, revealed the loss of ferroelectric response in epitaxial improper ferroelectric thin films. Here, we investigate improper ferroelectric hexagonal YMnO3 thin films and find that the polarization suppression, and hence functionality, in the thinner films is due to oxygen off-stoichiometry. We demonstrate that oxygen vacancies form on the film surfaces to provide the necessary charge to screen the large internal electric field resulting from the positively charged YMnO3 surface layers. Additionally, we show that by modifying the oxygen concentration of the films, the phase transition temperatures can be substantially tuned. We anticipate that our findings are also valid for other ferroelectric oxide films and emphasize the importance of controlling the oxygen content and cation oxidation states in ferroelectrics for their successful integration in nanoscale applications.

5.
Sci Adv ; 8(5): eabg5860, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35108054

RESUMEN

Antiferroelectric materials have seen a resurgence of interest because of proposed applications in a number of energy-efficient technologies. Unfortunately, relatively few families of antiferroelectric materials have been identified, precluding many proposed applications. Here, we propose a design strategy for the construction of antiferroelectric materials using interfacial electrostatic engineering. We begin with a ferroelectric material with one of the highest known bulk polarizations, BiFeO3. By confining thin layers of BiFeO3 in a dielectric matrix, we show that a metastable antiferroelectric structure can be induced. Application of an electric field reversibly switches between this new phase and a ferroelectric state. The use of electrostatic confinement provides an untapped pathway for the design of engineered antiferroelectric materials with large and potentially coupled responses.

6.
Nat Commun ; 12(1): 3093, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035244

RESUMEN

Magnetically induced ferroelectrics exhibit rigidly coupled magnetic and electric order. The ordering temperatures and spontaneous polarization of these multiferroics are notoriously low, however. Both properties can be much larger if magnetic and ferroelectric order occur independently, but the cost of this independence is that pronounced magnetoelectric interaction is no longer obvious. Using spatially resolved images of domains and density-functional theory, we show that in multiferroics with separately emerging magnetic and ferroelectric order, the microscopic magnetoelectric coupling can be intrinsically strong even though the macroscopic leading-order magnetoelectric effect is forbidden by symmetry. We show, taking hexagonal ErMnO3 as an example, that a strong bulk coupling between the ferroelectric and antiferromagnetic order is realized because the structural distortions that lead to the ferroelectric polarization also break the balance of the competing superexchange contributions. We observe the manifestation of this coupling in uncommon types of topological defects like magnetoelectric domain walls and vortex-like singularities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA