Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Genes Dev ; 36(1-2): 1-3, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022325

RESUMEN

RNA modifications are crucial for the proper function of the RNAs. The sites of pseudouridines are often specified by dual hairpin guide RNAs, with one or both hairpins identifying a target uridine. In this issue of Genes & Development, Jády and colleagues (pp. 70-83) identify a novel mechanism by which a single guide RNA hairpin can specify two uridines adjacent to each other or separated by 1 nt; i.e., one for two or guide RNA acrobatics.


Asunto(s)
Seudouridina , ARN Guía de Kinetoplastida , Seudouridina/genética , Seudouridina/metabolismo , ARN/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Ribosómico/genética , ARN Nucleolar Pequeño
2.
Genes Dev ; 35(15-16): 1123-1141, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301768

RESUMEN

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.


Asunto(s)
Células Intersticiales de Cajal/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Fosforilación , ARN Nuclear Pequeño/química , Ribonucleoproteínas/metabolismo , Empalmosomas/genética , Tratamiento Farmacológico de COVID-19
4.
Genes Dev ; 25(22): 2398-408, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22085966

RESUMEN

SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.


Asunto(s)
Modelos Moleculares , Imitación Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Supervivencia Celular , Humanos , Hidroliasas/química , Hidroliasas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Proteínas Nucleares/genética , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN de Hongos/metabolismo , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
RNA Biol ; 14(6): 693-700, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27775477

RESUMEN

Aside from nucleoli, Cajal bodies (CBs) are the best-characterized organelles of mammalian cell nuclei. Like nucleoli, CBs concentrate ribonucleoproteins (RNPs), in particular, spliceosomal small nuclear RNPs (snRNPs) and small nucleolar RNPs (snoRNPs). In one of the best-defined functions of CBs, most of the snoRNPs are involved in site-specific modification of snRNAs. The two major modifications are pseudouridylation and 2'-O-methylation that are guided by the box H/ACA and C/D snoRNPs, respectively. This review details the modifications, their function, the mechanism of modification, and the machineries involved. We dissect the different classes of noncoding RNAs that meet in CBs, guides and substrates. Open questions and conundrums, often raised and appearing due to experimental limitations, are pointed out and discussed. The emphasis of the review is on mammalian CBs and their function in modification of noncoding RNAs.


Asunto(s)
Cuerpos Enrollados/metabolismo , Procesamiento Postranscripcional del ARN , Animales , Humanos , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Empalmosomas/metabolismo
6.
RNA ; 18(10): 1833-45, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22923768

RESUMEN

The AAA+ ATPases pontin and reptin function in a staggering array of cellular processes including chromatin remodeling, transcriptional regulation, DNA damage repair, and assembly of macromolecular complexes, such as RNA polymerase II and small nucleolar (sno) RNPs. However, the molecular mechanism for all of these AAA+ ATPase associated activities is unknown. Here we document that, during the biogenesis of H/ACA RNPs (including telomerase), the assembly factor SHQ1 holds the pseudouridine synthase NAP57/dyskerin in a viselike grip, and that pontin and reptin (as components of the R2TP complex) are required to pry NAP57 from SHQ1. Significantly, the NAP57 domain captured by SHQ1 harbors most mutations underlying X-linked dyskeratosis congenita (X-DC) implicating the interface between the two proteins as a target of this bone marrow failure syndrome. Homing in on the essential first steps of H/ACA RNP biogenesis, our findings provide the first insight into the mechanism of action of pontin and reptin in the assembly of macromolecular complexes.


Asunto(s)
Proteínas Portadoras/fisiología , ADN Helicasas/fisiología , Sustancias Macromoleculares/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/fisiología , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Células HeLa , Humanos , Ratones , Modelos Biológicos , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología
7.
RNA Biol ; 11(12): 1483-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25590339

RESUMEN

Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.


Asunto(s)
Disqueratosis Congénita/metabolismo , Neoplasias de la Próstata/metabolismo , Seudouridina/metabolismo , Procesamiento Postranscripcional del ARN , ARN Guía de Kinetoplastida/metabolismo , Uridina/metabolismo , Disqueratosis Congénita/genética , Disqueratosis Congénita/patología , Humanos , Isomerismo , Masculino , Mutación , Conformación de Ácido Nucleico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Guía de Kinetoplastida/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
8.
Nucleic Acids Res ; 39(11): 4612-27, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21306993

RESUMEN

While it is widely acknowledged that the ubiquitin-proteasome system plays an important role in transcription, little is known concerning the mechanistic basis, in particular the spatial organization of proteasome-dependent proteolysis at the transcription site. Here, we show that proteasomal activity and tetraubiquitinated proteins concentrate to nucleoplasmic microenvironments in the euchromatin. Such proteolytic domains are immobile and distinctly positioned in relation to transcriptional processes. Analysis of gene arrays and early genes in Caenorhabditis elegans embryos reveals that proteasomes and proteasomal activity are distantly located relative to transcriptionally active genes. In contrast, transcriptional inhibition generally induces local overlap of proteolytic microdomains with components of the transcription machinery and degradation of RNA polymerase II. The results establish that spatial organization of proteasomal activity differs with respect to distinct phases of the transcription cycle in at least some genes, and thus might contribute to the plasticity of gene expression in response to environmental stimuli.


Asunto(s)
Núcleo Celular/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Transcripción Genética , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Núcleo Celular/genética , Embrión no Mamífero/enzimología , Embrión no Mamífero/metabolismo , Eucromatina/enzimología , Ratones , Proteínas Nucleares/metabolismo , Ubiquitinación
9.
Hum Mol Genet ; 18(23): 4546-51, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19734544

RESUMEN

X-linked dyskeratosis congenita (DC) is a rare bone marrow failure syndrome caused by mostly missense mutations in the pseudouridine synthase NAP57 (dyskerin/Cbf5). As part of H/ACA ribonucleoproteins (RNPs), NAP57 is important for the biogenesis of ribosomes, spliceosomal small nuclear RNPs, microRNAs and the telomerase RNP. DC mutations concentrate in the N- and C-termini of NAP57 but not in its central catalytic domain raising questions as to their impact. We demonstrate that the N- and C-termini together form the binding surface for the H/ACA RNP assembly factor SHQ1 and that DC mutations modulate the interaction between the two proteins. Pinpointing impaired interaction between NAP57 and SHQ1 as a potential molecular basis for X-linked DC has implications for therapeutic approaches, e.g. by targeting the NAP57-SHQ1 interface with small molecules.


Asunto(s)
Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Mutación , Proteínas Nucleares/genética , Ribonucleoproteínas/metabolismo , Secuencias de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Disqueratosis Congénita/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Conformación Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Ribonucleoproteínas/genética
10.
Hum Mol Genet ; 18(7): 1181-9, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19129172

RESUMEN

Spinal muscular atrophy (SMA) is a common autosomal recessive neurodegenerative disease caused by reduced survival motor neuron (SMN) levels. The assembly machinery containing SMN is implicated in the biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN is present in both the cytoplasm and nucleus, where it transiently accumulates in subnuclear domains named Cajal bodies (CBs) and functions in the maturation of snRNPs and small nucleolar (sno)RNPs. The impact of lowering SMN levels on the composition of CBs in SMA cells is still not completely understood. Here, we analyse the CB composition in immortalized and primary fibroblasts from SMA patients. We show that the U snRNA export factors PHAX and chromosome region maintenance 1 and the box C/D snoRNP core protein fibrillarin concentrate in CBs from SMA cells, whereas the box H/ACA core proteins GAR1 and NAP57/dyskerin show reduced CB localization. Remarkably, the functional deficiency in SMA cells is associated with decreased localization of the snoRNP chaperone Nopp140 in CBs that correlates with disease severity. Indeed, RNA interference knockdown experiments in control fibroblasts demonstrate that SMN is required for accumulation of Nopp140 in CBs. Conversely, overexpression of SMN in SMA cells restores the CB localization of Nopp140, whereas SMN mutants found in SMA patients are defective in promoting the association of Nopp140 with CBs. Taken together, we demonstrate that only a subset of CB functions (as indicated by the association of representative factors) are impaired in SMA cells and, importantly, we identify the decrease of Nopp140 localization in CBs as a phenotypic marker for SMA.


Asunto(s)
Cuerpos Enrollados/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Chaperonas Moleculares/metabolismo , Atrofia Muscular Espinal/patología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Animales , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Humanos , Atrofia Muscular Espinal/metabolismo , Proteínas Mutantes/metabolismo , Transporte de Proteínas , Interferencia de ARN , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
11.
RNA ; 15(6): 1188-97, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19383767

RESUMEN

Assembly of H/ACA RNPs in yeast is aided by at least two accessory factors, Naf1p and Shq1p. Although the function of Naf1p and its human ortholog NAF1 has been delineated in detail, that of Shq1p and its putative human ortholog SHQ1 remains obscure. We demonstrate that SHQ1 indeed functions in the biogenesis of human H/ACA RNPs and we dissect its mechanism of action. Like NAF1, SHQ1 binds the major H/ACA core protein and pseudouridine synthase NAP57 (aka dyskerin) but precedes the assembly role of NAF1 at nascent H/ACA RNAs because the interaction of SHQ1 with NAP57 in vivo and in vitro precludes that of NAF1 and of the other H/ACA core proteins that are present at the sites of H/ACA RNA transcription. The N-terminal heat shock protein 20-like CS domain of SHQ1 is dispensable for NAP57 binding. Consistent with its role as an assembly factor, SHQ1 localizes to the nucleoplasm and is excluded from nucleoli and Cajal bodies, the sites of mature H/ACA RNPs. In an in vitro assembly system of functional H/ACA RNPs that is dependent on NAF1, excess recombinant SHQ1 interferes with assembly. Importantly, knockdown of cellular SHQ1 prevents accumulation of a newly synthesized H/ACA reporter RNA and generally reduces the levels of endogenous H/ACA RNAs including telomerase RNA. In summary, the sequential action of SHQ1 and NAF1 is required for functional assembly of H/ACA RNPs in vivo and in vitro. This step-wise process could serve as an efficient means of quality control during H/ACA RNP assembly.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Telomerasa/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , ARN/metabolismo , Transfección
12.
J Cell Biol ; 173(2): 207-18, 2006 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-16618814

RESUMEN

Mammalian H/ACA RNPs are essential for ribosome biogenesis, premessenger RNA splicing, and telomere maintenance. These RNPs consist of four core proteins and one RNA, but it is not known how they assemble. By interrogating the site of H/ACA RNA transcription, we dissected their biogenesis in single cells and delineated the role of the non-core protein NAF1 in the process. NAF1 and all of the core proteins except GAR1 are recruited to the site of transcription. NAF1 binds one of the core proteins, NAP57, and shuttles between nucleus and cytoplasm. Both proteins are essential for stable H/ACA RNA accumulation. NAF1 and GAR1 bind NAP57 competitively, suggesting a sequential interaction. Our analyses indicate that NAF1 binds NAP57 and escorts it to the nascent H/ACA RNA and that GAR1 then replaces NAF1 to yield mature H/ACA RNPs in Cajal bodies and nucleoli.


Asunto(s)
Proteínas de Unión al ADN/fisiología , ARN/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/biosíntesis , Transcripción Genética , Unión Competitiva , Línea Celular , Células Cultivadas , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo
13.
Trends Biochem Sci ; 31(6): 311-5, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16647858

RESUMEN

More than 100 mammalian H/ACA RNAs form an equal number of ribonucleoproteins (RNPs) by associating with the same four core proteins. The function of these H/ACA RNPs is essential for biogenesis of the ribosome, splicing of precursor mRNAs (pre-mRNAs), maintenance of telomeres and probably for additional cellular processes. Recent crystal structures of archaeal H/ACA protein complexes show how the same four proteins accommodate >100 distinct but related H/ACA RNAs and reveal that a spatial mutation cluster underlies dyskeratosis congenita, a syndrome of bone marrow failure.


Asunto(s)
Proteínas Arqueales/metabolismo , Disqueratosis Congénita/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Animales , Proteínas Arqueales/química , Proteínas Arqueales/genética , Disqueratosis Congénita/genética , Mamíferos/genética , Mamíferos/metabolismo , Mutación , Unión Proteica/genética , Estructura Terciaria de Proteína , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteínas Nucleolares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
14.
F S Sci ; 2(1): 80-87, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35156063

RESUMEN

OBJECTIVE: To detect nucleolar channel systems (NCSs) in cells in endometrial aspirations obtained immediately before embryo transfer during blastocyst hormone replacement therapy-frozen embryo transfer (HRT-FET) cycles without affecting implantation. DESIGN: Prospective case series. SETTING: University-affiliated fertility clinic. PATIENTS: Five patients who underwent an HRT-FET cycle consented to lower uterine segment aspiration using an open-tip embryo transfer catheter during a routine mock transfer performed immediately before embryo transfer. INTERVENTIONS: Exfoliated cells in the aspirated endometrial secretions were analyzed for the presence of NCSs using indirect immunofluorescence and, in one case, electron microscopy for unambiguous identification. MAIN OUTCOME MEASURES: On the basis of a previous study, positive NCS status was defined as the presence of NCSs in at least 3 endometrial epithelial cells (EECs). The effect of endometrial aspiration on implantation and pregnancy outcomes was assessed. RESULTS: Biochemical pregnancy, as evidenced by positive ß-human chorionic gonadotropin, was seen in 5 of 5 patients, and clinical pregnancy was seen in 2 of 5 patients. NCSs were detected in exfoliated EECs of uterine secretions in 4 of 5 patient samples and could not be unequivocally identified in 1 of 5 patient samples, which was designated as indeterminate. CONCLUSIONS: This is the first report of NCS detection in HRT-FET cycles in the absence of follicular development and ovulation. NCS status can be determined in exfoliated EECs of uterine secretions obtained at the time of embryo transfer while maintaining implantation. Our study furthers the goal of establishing whether individualized point of care testing of NCS status in HRT-FET cycles can determine optimal endometrial receptivity and improve pregnancy outcomes.


Asunto(s)
Transferencia de Embrión , Inducción de la Ovulación , Femenino , Terapia de Reemplazo de Hormonas , Hormonas , Humanos , Embarazo , Índice de Embarazo
15.
bioRxiv ; 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33948588

RESUMEN

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB) specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at some 80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.

17.
Mol Biol Cell ; 18(6): 2296-304, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17429075

RESUMEN

The nucleolar channel system (NCS) is a well-established ultrastructural hallmark of the postovulation endometrium. Its transient presence has been associated with human fertility. Nevertheless, the biogenesis, composition, and function of these intranuclear membrane cisternae are unknown. Membrane systems with a striking ultrastructural resemblance to the NCS, termed R-rings, are induced in nuclei of tissue culture cells by overexpression of the central repeat domain of the nucleolar protein Nopp140. Here we provide a first molecular characterization of the NCS and compare the biogenesis of these two enigmatic organelles. Like the R-rings, the NCS consists of endoplasmic reticulum harboring the marker glucose-6-phosphatase. R-ring formation initiates at the nuclear envelope, apparently by a calcium-mediated Nopp140-membrane interaction, as supported by the calcium-binding ability of Nopp140, the inhibition of R-ring formation by calcium chelators, and the concentration of Nopp140 and complexed calcium in R-rings. Although biogenesis of the NCS may initiate similarly, the reduced presence of complexed calcium and Nopp140 suggests the involvement of additional factors.


Asunto(s)
Nucléolo Celular/metabolismo , Endometrio/citología , Retículo Endoplásmico/metabolismo , Calcio/metabolismo , Nucléolo Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Femenino , Humanos , Microscopía Inmunoelectrónica , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo
18.
Histochem Cell Biol ; 132(2): 129-40, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19381672

RESUMEN

We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.


Asunto(s)
Interfase , Mitosis , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Núcleo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Imagenología Tridimensional , Microscopía Confocal , Microscopía Inmunoelectrónica , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN
19.
J Cell Biol ; 164(6): 831-42, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15024031

RESUMEN

Cajal bodies (CBs) are subnuclear domains implicated in small nuclear ribonucleoprotein (snRNP) biogenesis. In most cell types, CBs coincide with nuclear gems, which contain the survival of motor neurons (SMN) complex, an essential snRNP assembly factor. Here, we analyze the exchange kinetics of multiple components of CBs and gems in living cells using photobleaching microscopy. We demonstrate differences in dissociation kinetics of CB constituents and relate them to their functions. Coilin and SMN complex members exhibit relatively long CB residence times, whereas components of snRNPs, small nucleolar RNPs, and factors shared with the nucleolus have significantly shorter residence times. Comparison of the dissociation kinetics of these shared proteins from either the nucleolus or the CB suggests the existence of compartment-specific retention mechanisms. The dynamic properties of several CB components do not depend on their interaction with coilin because their dissociation kinetics are unaltered in residual nuclear bodies of coilin knockout cells. Photobleaching and fluorescence resonance energy transfer experiments demonstrate that coilin and SMN can interact within CBs, but their interaction is not the major determinant of their residence times. These results suggest that CBs and gems are kinetically independent structures.


Asunto(s)
Cuerpos Enrollados/metabolismo , Animales , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Sustancias Macromoleculares , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Empalme del ARN , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Empalmosomas/metabolismo , Factores de Tiempo
20.
Mol Biol Cell ; 30(26): 3136-3150, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31664887

RESUMEN

Cajal bodies (CBs) are nuclear organelles concentrating two kinds of RNA--protein complexes (RNPs), spliceosomal small nuclear (sn), and small CB-specific (sca)RNPs. Whereas the CB marker protein coilin is responsible for retaining snRNPs, the tether for scaRNPs is not known. Here we show that Nopp140, an intrinsically disordered CB phosphoprotein, is required to recruit and retain all scaRNPs in CBs. Knockdown (KD) of Nopp140 releases all scaRNPs leading to an unprecedented reduction in size of CB granules, hallmarks of CB ultrastructure. The CB-localizing protein WDR79 (aka TCAB1), which is mutated in the inherited bone marrow failure syndrome dyskeratosis congenita, is a specific component of all scaRNPs, including telomerase. Whereas mislocalization of telomerase by mutation of WDR79 leads to critically shortened telomeres, mislocalization of telomerase by Nopp140 KD leads to gradual extension of telomeres. Our studies suggest that the dynamic distribution of telomerase between CBs and nucleoplasm uniquely impacts telomere length maintenance and identify Nopp140 as a novel player in telomere biology.


Asunto(s)
Cuerpos Enrollados/metabolismo , Chaperonas Moleculares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero/fisiología , Telómero/fisiología , Línea Celular Tumoral , Disqueratosis Congénita/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Telomerasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA