RESUMEN
The encapsulation of copper inside a cyclodextrin capped with an N-heterocyclic carbene (ICyD) allowed both to catch the elusive monomeric (L)CuH and a cavity-controlled chemoselective copper-catalyzed hydrosilylation of α,ß-unsaturated ketones. Remarkably, (α-ICyD)CuCl promoted the 1,2-addition exclusively, while (ß-ICyD)CuCl produced the fully reduced product. The chemoselectivity is controlled by the size of the cavity and weak interactions between the substrate and internal C-H bonds of the cyclodextrin.
RESUMEN
N-heterocyclic carbene-capped cyclodextrin (ICyD) ligands, α-ICyD and ß-ICyD derived from α- and ß-cyclodextrin, respectively give opposite regioselectivities in a copper-catalyzed hydroboration. The site-selectivity results from two different mechanisms: the conventional parallel one and a new orthogonal mechanism. The shape of the cavity was shown not only to induce a regioselectivity switch but also a mechanistic switch. The scope of interest of the encapsulation of a reactive center is therefore broadened by this study.