RESUMEN
Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.
Asunto(s)
Genómica , Humanos , Genómica/métodos , Exoma/genética , Secuenciación del Exoma/métodos , Bases de Datos Genéticas , Pruebas Genéticas/métodos , Genoma Humano , Secuenciación Completa del Genoma/métodos , FenotipoRESUMEN
MOTIVATION: The Biological Reference Repository (BioR) is a toolkit for annotating variants. BioR stores public and user-specific annotation sources in indexed JSON-encoded flat files (catalogs). The BioR toolkit provides the functionality to combine and retrieve annotation from these catalogs via the command-line interface. Several catalogs from commonly used annotation sources and instructions for creating user-specific catalogs are provided. Commands from the toolkit can be combined with other UNIX commands for advanced annotation processing. We also provide instructions for the development of custom annotation pipelines. AVAILABILITY AND IMPLEMENTATION: The package is implemented in Java and makes use of external tools written in Java and Perl. The toolkit can be executed on Mac OS X 10.5 and above or any Linux distribution. The BioR application, quickstart, and user guide documents and many biological examples are available at http://bioinformaticstools.mayo.edu.