Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochemistry ; 60(30): 2331-2340, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34291898

RESUMEN

Correlated motions in proteins arising from the collective movements of residues have long been proposed to be fundamentally important to key properties of proteins, from allostery and catalysis to evolvability. Recent breakthroughs in structural biology have made it possible to capture proteins undergoing complex conformational changes, yet intrinsic correlated motions within a conformation remain one of the least understood facets of protein structure. For many decades, the analysis of total X-ray scattering held the promise of animating crystal structures with correlated motions. With recent advances in both X-ray detectors and data interpretation methods, this long-held promise can now be met. In this Perspective, we will introduce how correlated motions are captured in total scattering and provide guidelines for the collection, interpretation, and validation of data. As structural biology continues to push the boundaries, we see an opportunity to gain atomistic insight into correlated motions using total scattering as a bridge between theory and experiment.


Asunto(s)
Simulación de Dinámica Molecular , Movimiento (Física) , Proteínas/química , Cristalografía por Rayos X , Conformación Proteica
2.
Proc Natl Acad Sci U S A ; 115(20): E4594-E4603, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712847

RESUMEN

The high fidelity of DNA replication and repair is attributable, in part, to the allosteric regulation of ribonucleotide reductases (RNRs) that maintains proper deoxynucleotide pool sizes and ratios in vivo. In class Ia RNRs, ATP (stimulatory) and dATP (inhibitory) regulate activity by binding to the ATP-cone domain at the N terminus of the large α subunit and altering the enzyme's quaternary structure. Class Ib RNRs, in contrast, have a partial cone domain and have generally been found to be insensitive to dATP inhibition. An exception is the Bacillus subtilis Ib RNR, which we recently reported to be inhibited by physiological concentrations of dATP. Here, we demonstrate that the α subunit of this RNR contains tightly bound deoxyadenosine 5'-monophosphate (dAMP) in its N-terminal domain and that dATP inhibition of CDP reduction is enhanced by its presence. X-ray crystallography reveals a previously unobserved (noncanonical) α2 dimer with its entire interface composed of the partial N-terminal cone domains, each binding a dAMP molecule. Using small-angle X-ray scattering (SAXS), we show that this noncanonical α2 dimer is the predominant form of the dAMP-bound α in solution and further show that addition of dATP leads to the formation of larger oligomers. Based on this information, we propose a model to describe the mechanism by which the noncanonical α2 inhibits the activity of the B. subtilis Ib RNR in a dATP- and dAMP-dependent manner.


Asunto(s)
Bacillus subtilis/enzimología , Nucleótidos de Desoxiadenina/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Regulación Alostérica , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nucleótidos de Desoxiadenina/química , Ligandos , Unión Proteica , Conformación Proteica , Ribonucleótido Reductasas/genética , Dispersión del Ángulo Pequeño , Especificidad por Sustrato
3.
J Biol Chem ; 294(12): 4359-4367, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30674554

RESUMEN

The naturally occurring R68S substitution of phenylalanine hydroxylase (PheH) causes phenylketonuria (PKU). However, the molecular basis for how the R68S variant leads to PKU remains unclear. Kinetic characterization of R68S PheH establishes that the enzyme is fully active in the absence of allosteric binding of phenylalanine, in contrast to the WT enzyme. Analytical ultracentrifugation establishes that the isolated regulatory domain of R68S PheH is predominantly monomeric in the absence of phenylalanine and dimerizes in its presence, similar to the regulatory domain of the WT enzyme. Fluorescence and small-angle X-ray scattering analyses establish that the overall conformation of the resting form of R68S PheH is different from that of the WT enzyme. The data are consistent with the substitution disrupting the interface between the catalytic and regulatory domains of the enzyme, shifting the equilibrium between the resting and activated forms ∼200-fold, so that the resting form of R68S PheH is ∼70% in the activated conformation. However, R68S PheH loses activity 2 orders of magnitude more rapidly than the WT enzyme at 37 °C and is significantly more sensitive to proteolysis. We propose that, even though this substitution converts the enzyme to a constitutively active enzyme, it results in PKU because of the decrease in protein stability.


Asunto(s)
Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/metabolismo , Regulación Alostérica , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Cinética , Mutación , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/genética , Conformación Proteica , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia , Ultracentrifugación , Difracción de Rayos X
4.
Proc Natl Acad Sci U S A ; 114(2): 334-339, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028239

RESUMEN

The nucleosome core particle (NCP) is the basic structural unit for genome packaging in eukaryotic cells and consists of DNA wound around a core of eight histone proteins. DNA access is modulated through dynamic processes of NCP disassembly. Partly disassembled structures, such as the hexasome (containing six histones) and the tetrasome (four histones), are important for transcription regulation in vivo. However, the pathways for their formation have been difficult to characterize. We combine time-resolved (TR) small-angle X-ray scattering and TR-FRET to correlate changes in the DNA conformations with composition of the histone core during salt-induced disassembly of canonical NCPs. We find that H2A-H2B histone dimers are released sequentially, with the first dimer being released after the DNA has formed an asymmetrically unwrapped, teardrop-shape DNA structure. This finding suggests that the octasome-to-hexasome transition is guided by the asymmetric unwrapping of the DNA. The link between DNA structure and histone composition suggests a potential mechanism for the action of proteins that alter nucleosome configurations such as histone chaperones and chromatin remodeling complexes.


Asunto(s)
ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Animales , Cromatina/metabolismo , Conformación de Ácido Nucleico , Xenopus laevis/metabolismo
5.
Chem Rev ; 117(12): 7615-7672, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28558231

RESUMEN

X-ray scattering is uniquely suited to the study of disordered systems and thus has the potential to provide insight into dynamic processes where diffraction methods fail. In particular, while X-ray crystallography has been a staple of structural biology for more than half a century and will continue to remain so, a major limitation of this technique has been the lack of dynamic information. Solution X-ray scattering has become an invaluable tool in structural and mechanistic studies of biological macromolecules where large conformational changes are involved. Such systems include allosteric enzymes that play key roles in directing metabolic fluxes of biochemical pathways, as well as large, assembly-line type enzymes that synthesize secondary metabolites with pharmaceutical applications. Furthermore, crystallography has the potential to provide information on protein dynamics via the diffuse scattering patterns that are overlaid with Bragg diffraction. Historically, these patterns have been very difficult to interpret, but recent advances in X-ray detection have led to a renewed interest in diffuse scattering analysis as a way to probe correlated motions. Here, we will review X-ray scattering theory and highlight recent advances in scattering-based investigations of protein solutions and crystals, with a particular focus on complex enzymes.


Asunto(s)
Proteínas/química , Difracción de Rayos X/métodos , Animales , Humanos , Conformación Proteica
6.
Nucleic Acids Res ; 45(9): e66, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28034955

RESUMEN

Single-stranded nucleic acids (ssNAs) are ubiquitous in many key cellular functions. Their flexibility limits both the number of high-resolution structures available, leaving only a small number of protein-ssNA crystal structures, while forcing solution investigations to report ensemble averages. A description of the conformational distributions of ssNAs is essential to more fully characterize biologically relevant interactions. We combine small angle X-ray scattering (SAXS) with ensemble-optimization methods (EOM) to dynamically build and refine sets of ssNA structures. By constructing candidate chains in representative dinucleotide steps and refining the models against SAXS data, a broad array of structures can be obtained to match varying solution conditions and strand sequences. In addition to the distribution of large scale structural parameters, this approach reveals, for the first time, intricate details of the phosphate backbone and underlying strand conformations. Such information on unperturbed strands will critically inform a detailed understanding of an array of problems including protein-ssNA binding, RNA folding and the polymer nature of NAs. In addition, this scheme, which couples EOM selection with an iteratively refining pool to give confidence in the underlying structures, is likely extendable to the study of other flexible systems.


Asunto(s)
Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Metodologías Computacionales , ADN de Cadena Simple/química , Modelos Químicos , Dispersión del Ángulo Pequeño , Soluciones/química , Difracción de Rayos X
7.
Nucleic Acids Res ; 45(7): 3932-3943, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28334825

RESUMEN

Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy are employed to determine the composition of the ion atmosphere at physiological ionic strength. Applying this combined approach to poly dA and poly dT, we find that the global properties of these sequences are very similar, despite having vastly different propensities for single-stranded helical stacking. These results suggest that a relatively simple mechanism for the binding of ssDNA to non-specific SSBs may be at play, which explains the disparity in binding affinities observed for these systems.


Asunto(s)
ADN de Cadena Simple/química , Modelos Moleculares , Conformación de Ácido Nucleico , Concentración Osmolar , Dispersión del Ángulo Pequeño , Electricidad Estática , Difracción de Rayos X
8.
Acc Chem Res ; 50(3): 580-583, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28945428

RESUMEN

Over the past century, X-ray crystallography has been defined by a pursuit for perfection and high resolution. The next Holy Grail of crystallography is to embrace imperfection toward a dynamic picture of enzymes.


Asunto(s)
Cristalografía por Rayos X/métodos , Enzimas/química , Estructura Molecular
9.
J Am Chem Soc ; 138(20): 6506-16, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27145334

RESUMEN

Mammalian phenylalanine hydroxylase (PheH) is an allosteric enzyme that catalyzes the first step in the catabolism of the amino acid phenylalanine. Following allosteric activation by high phenylalanine levels, the enzyme catalyzes the pterin-dependent conversion of phenylalanine to tyrosine. Inability to control elevated phenylalanine levels in the blood leads to increased risk of mental disabilities commonly associated with the inherited metabolic disorder, phenylketonuria. Although extensively studied, structural changes associated with allosteric activation in mammalian PheH have been elusive. Here, we examine the complex allosteric mechanisms of rat PheH using X-ray crystallography, isothermal titration calorimetry (ITC), and small-angle X-ray scattering (SAXS). We describe crystal structures of the preactivated state of the PheH tetramer depicting the regulatory domains docked against the catalytic domains and preventing substrate binding. Using SAXS, we further describe the domain movements involved in allosteric activation of PheH in solution and present the first demonstration of chromatography-coupled SAXS with Evolving Factor Analysis (EFA), a powerful method for separating scattering components in a model-independent way. Together, these results support a model for allostery in PheH in which phenylalanine stabilizes the dimerization of the regulatory domains and exposes the active site for substrate binding and other structural changes needed for activity.


Asunto(s)
Cromatografía/métodos , Cristalografía por Rayos X/métodos , Fenilalanina Hidroxilasa/química , Animales , Calorimetría , Dominio Catalítico , Conformación Proteica , Ratas , Dispersión del Ángulo Pequeño
10.
Nucleic Acids Res ; 42(13): 8767-76, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24990379

RESUMEN

The modulation of DNA accessibility by nucleosomes is a fundamental mechanism of gene regulation in eukaryotes. The nucleosome core particle (NCP) consists of 147 bp of DNA wrapped around a symmetric octamer of histone proteins. The dynamics of DNA packaging and unpackaging from the NCP affect all DNA-based chemistries, but depend on many factors, including DNA positioning sequence, histone variants and modifications. Although the structure of the intact NCP has been studied by crystallography at atomic resolution, little is known about the structures of the partially unwrapped, transient intermediates relevant to nucleosome dynamics in processes such as transcription, DNA replication and repair. We apply a new experimental approach combining contrast variation with time-resolved small angle X-ray scattering (TR-SAXS) to determine transient structures of protein and DNA constituents of NCPs during salt-induced disassembly. We measure the structures of unwrapping DNA and monitor protein dissociation from Xenopus laevis histones reconstituted with two model NCP positioning constructs: the Widom 601 sequence and the sea urchin 5S ribosomal gene. Both constructs reveal asymmetric release of DNA from disrupted histone cores, but display different patterns of protein dissociation. These kinetic intermediates may be biologically important substrates for gene regulation.


Asunto(s)
ADN/química , Nucleosomas/química , Conformación de Ácido Nucleico , Dispersión del Ángulo Pequeño , Cloruro de Sodio/química , Difracción de Rayos X
11.
Biophys J ; 108(12): 2886-95, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26083928

RESUMEN

Nucleic acids carry a negative charge, attracting salt ions and water. Interactions with these components of the solvent drive DNA to condense, RNA to fold, and proteins to bind. To understand these biological processes, knowledge of solvent structure around the nucleic acids is critical. Yet, because they are often disordered, ions and water evade detection by x-ray crystallography and other high-resolution methods. Small-angle x-ray scattering (SAXS) is uniquely sensitive to the spatial correlations between solutes and the surrounding solvent. Thus, SAXS provides an experimental constraint to guide or test emerging solvation theories. However, the interpretation of SAXS profiles is nontrivial because of the difficulty in separating the scattering signals of each component: the macromolecule, ions, and hydration water. Here, we demonstrate methods for robustly deconvoluting these signals, facilitating a more straightforward comparison with theory. Using SAXS data collected on an absolute intensity scale for short DNA duplexes in solution with Na(+), K(+), Rb(+), or Cs(+) counterions, we mathematically decompose the scattering profiles into components (DNA, water, and ions) and validate the decomposition using anomalous scattering measurements. In addition, we generate a library of physically motivated ion atmosphere models and rank them by agreement with the scattering data. The best-fit models have relatively compact ion atmospheres when compared to predictions from the mean-field Poisson-Boltzmann theory of electrostatics. Thus, the x-ray scattering methods presented here provide a valuable measurement of the global structure of the ion atmosphere that can be used to test electrostatics theories that go beyond the mean-field approximation.


Asunto(s)
ADN/química , Metales Alcalinos/química , Simulación de Dinámica Molecular , Secuencia de Bases , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Dispersión del Ángulo Pequeño , Agua/química , Difracción de Rayos X
12.
Proc Natl Acad Sci U S A ; 109(3): 799-804, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22203973

RESUMEN

Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (l(p)) of ssRNA. We observe valence and ionic strength-dependent differences in l(p) in a direct comparison between 40-mers of deoxythymidylate (dT(40)) and uridylate (rU(40)) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo.


Asunto(s)
ADN de Cadena Simple/química , ARN/química , Transferencia Resonante de Energía de Fluorescencia , Iones , Cloruro de Magnesio/farmacología , Modelos Moleculares , Concentración Osmolar , Docilidad/efectos de los fármacos , Dispersión del Ángulo Pequeño , Cloruro de Sodio/farmacología , Difracción de Rayos X
13.
J Chem Phys ; 141(22): 22D508, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25494779

RESUMEN

A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb(+) and Sr(2+)) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.


Asunto(s)
Ácidos Nucleicos/química , Proteínas/química , Agua/química , Simulación de Dinámica Molecular , Muramidasa/química , Mioglobina/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
14.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293202

RESUMEN

Diffuse scattering is a promising method to gain additional insight into protein dynamics from macromolecular crystallography (MX) experiments. Bragg intensities yield the average electron density, while the diffuse scattering can be processed to obtain a three-dimensional reciprocal space map, that is further analyzed to determine correlated motion. To make diffuse scattering techniques more accessible, we have created software for data processing called mdx2 that is both convenient to use and simple to extend and modify. Mdx2 is written in Python, and it interfaces with DIALS to implement self-contained data reduction workflows. Data are stored in NeXus format for software interchange and convenient visualization. Mdx2 can be run on the command line or imported as a package, for instance to encapsulate a complete workflow in a Jupyter notebook for reproducible computing and education. Here, we describe mdx2 version 1.0, a new release incorporating state-of-the-art techniques for data reduction. We describe the implementation of a complete multi-crystal scaling and merging workflow, and test the methods using a high-redundancy dataset from cubic insulin. We show that redundancy can be leveraged during scaling to correct systematic errors, and obtain accurate and reproducible measurements of weak diffuse signals.

15.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 299-313, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38606664

RESUMEN

Diffuse scattering is a promising method to gain additional insight into protein dynamics from macromolecular crystallography experiments. Bragg intensities yield the average electron density, while the diffuse scattering can be processed to obtain a three-dimensional reciprocal-space map that is further analyzed to determine correlated motion. To make diffuse scattering techniques more accessible, software for data processing called mdx2 has been created that is both convenient to use and simple to extend and modify. mdx2 is written in Python, and it interfaces with DIALS to implement self-contained data-reduction workflows. Data are stored in NeXus format for software interchange and convenient visualization. mdx2 can be run on the command line or imported as a package, for instance to encapsulate a complete workflow in a Jupyter notebook for reproducible computing and education. Here, mdx2 version 1.0 is described, a new release incorporating state-of-the-art techniques for data reduction. The implementation of a complete multi-crystal scaling and merging workflow is described, and the methods are tested using a high-redundancy data set from cubic insulin. It is shown that redundancy can be leveraged during scaling to correct systematic errors and obtain accurate and reproducible measurements of weak diffuse signals.


Asunto(s)
Programas Informáticos , Sustancias Macromoleculares/química , Cristalografía por Rayos X/métodos , Proteínas/química , Insulina/química
16.
Biophys J ; 104(1): 227-36, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23332075

RESUMEN

Small angle x-ray scattering (SAXS) is a versatile and widely used technique for obtaining low-resolution structures of macromolecules and complexes. SAXS experiments measure molecules in solution, without the need for labeling or crystallization. However, radiation damage currently limits the application of SAXS to molecules that can be produced in microgram quantities; for typical proteins, 10-20 µL of solution at 1 mg/mL is required to accumulate adequate signal before irreversible x-ray damage is observed. Here, we show that cryocooled proteins and nucleic acids can withstand doses at least two orders of magnitude larger than room temperature samples. We demonstrate accurate T = 100 K particle envelope reconstructions from sample volumes as small as 15 nL, a factor of 1000 smaller than in current practice. Cryo-SAXS will thus enable structure determination of difficult-to-express proteins and biologically important, highly radiation-sensitive proteins including light-activated switches and metalloenzymes.


Asunto(s)
Frío , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Isomerasas Aldosa-Cetosa/química , Animales , Tampones (Química) , Pollos , Crioprotectores/farmacología , Relación Dosis-Respuesta en la Radiación , Polietilenglicoles/química , Soluciones , Vitrificación/efectos de los fármacos
17.
Biopolymers ; 99(12): 1032-45, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23606337

RESUMEN

Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with wormlike chain models, but nonbase-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and divalent salt. We report measurements of the form factor and interparticle interactions using SAXS, end-to-end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent molecular dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers.


Asunto(s)
ADN de Cadena Simple , Dispersión del Ángulo Pequeño , ADN , Iones , Conformación de Ácido Nucleico , Electricidad Estática , Difracción de Rayos X
18.
bioRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333125

RESUMEN

Diffuse scattering is a powerful technique to study disorder and dynamics of macromolecules at atomic resolution. Although diffuse scattering is always present in diffraction images from macromolecular crystals, the signal is weak compared with Bragg peaks and background, making it a challenge to visualize and measure accurately. Recently, this challenge has been addressed using the reciprocal space mapping technique, which leverages ideal properties of modern X-ray detectors to reconstruct the complete three-dimensional volume of continuous diffraction from diffraction images of a crystal (or crystals) in many different orientations. This chapter will review recent progress in reciprocal space mapping with a particular focus on the strategy implemented in the mdx-lib and mdx2 software packages. The chapter concludes with an introductory data processing tutorial using Python packages DIALS, NeXpy , and mdx2 .

19.
Methods Enzymol ; 688: 43-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37748832

RESUMEN

Diffuse scattering is a powerful technique to study disorder and dynamics of macromolecules at atomic resolution. Although diffuse scattering is always present in diffraction images from macromolecular crystals, the signal is weak compared with Bragg peaks and background, making it a challenge to visualize and measure accurately. Recently, this challenge has been addressed using the reciprocal space mapping technique, which leverages ideal properties of modern X-ray detectors to reconstruct the complete three-dimensional volume of continuous diffraction from diffraction images of a crystal (or crystals) in many different orientations. This chapter will review recent progress in reciprocal space mapping with a particular focus on the strategy implemented in the mdx-lib and mdx2 software packages. The chapter concludes with an introductory data processing tutorial using Python packages DIALS, NeXpy, and mdx2.


Asunto(s)
Sustancias Macromoleculares
20.
Nat Commun ; 14(1): 1228, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869043

RESUMEN

The breathing motions of proteins are thought to play a critical role in function. However, current techniques to study key collective motions are limited to spectroscopy and computation. We present a high-resolution experimental approach based on the total scattering from protein crystals at room temperature (TS/RT-MX) that captures both structure and collective motions. To reveal the scattering signal from protein motions, we present a general workflow that enables robust subtraction of lattice disorder. The workflow introduces two methods: GOODVIBES, a detailed and refinable lattice disorder model based on the rigid-body vibrations of a crystalline elastic network; and DISCOBALL, an independent method of validation that estimates the displacement covariance between proteins in the lattice in real space. Here, we demonstrate the robustness of this workflow and further demonstrate how it can be interfaced with MD simulations towards obtaining high-resolution insight into functionally important protein motions.


Asunto(s)
Vibración , Rayos X , Flujo de Trabajo , Radiografía , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA