Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032429

RESUMEN

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , Activación de Complemento , Proteoma , SARS-CoV-2/inmunología , Linfocitos T Citotóxicos/inmunología , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Factores Quimiotácticos/metabolismo , Citotoxicidad Inmunológica , Células Endoteliales/virología , Femenino , Humanos , Activación de Linfocitos , Masculino , Microvasos/virología , Persona de Mediana Edad , Monocitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análisis de la Célula Individual , Adulto Joven
2.
Nature ; 600(7888): 295-301, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695836

RESUMEN

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.


Asunto(s)
COVID-19/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Factor de Crecimiento Transformador beta/inmunología , Atlas como Asunto , Regulación de la Expresión Génica/inmunología , Humanos , Inmunidad Innata , Gripe Humana/inmunología , Células Asesinas Naturales/patología , RNA-Seq , Análisis de la Célula Individual , Factores de Tiempo , Factor de Crecimiento Transformador beta/sangre , Carga Viral/inmunología , Replicación Viral/inmunología
3.
Ann Neurol ; 95(5): 984-997, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38391006

RESUMEN

OBJECTIVE: In temporal lobe epilepsy (TLE), a taxonomy classifying patients into 3 cognitive phenotypes has been adopted: minimally, focally, or multidomain cognitively impaired (CI). We examined gray matter (GM) thickness patterns of cognitive phenotypes in drug-resistant TLE and assessed potential use for predicting postsurgical cognitive outcomes. METHODS: TLE patients undergoing presurgical evaluation were categorized into cognitive phenotypes. Network edge weights and distances were calculated using type III analysis of variance F-statistics from comparisons of GM regions within each TLE cognitive phenotype and age- and sex-matched healthy participants. In resected patients, logistic regression models (LRMs) based on network analysis results were used for prediction of postsurgical cognitive outcome. RESULTS: A total of 124 patients (63 females, mean age ± standard deviation [SD] = 36.0 ± 12.0 years) and 117 healthy controls (63 females, mean age ± SD = 36.1 ± 12.0 years) were analyzed. In the multidomain CI group (n = 66, 53.2%), 28 GM regions were significantly thinner compared to healthy controls. Focally impaired patients (n = 37, 29.8%) showed 13 regions, whereas minimally impaired patients (n = 21, 16.9%) had 2 significantly thinner GM regions. Regions affected in both multidomain and focally impaired patients included the anterior cingulate cortex, medial prefrontal cortex, medial temporal, and lateral temporal regions. In 69 (35 females, mean age ± SD = 33.6 ± 18.0 years) patients who underwent surgery, LRMs based on network-identified GM regions predicted postsurgical verbal memory worsening with a receiver operating curve area under the curve of 0.70 ± 0.15. INTERPRETATION: A differential pattern of GM thickness can be found across different cognitive phenotypes in TLE. Including magnetic resonance imaging with clinical measures associated with cognitive profiles has potential in predicting postsurgical cognitive outcomes in drug-resistant TLE. ANN NEUROL 2024;95:984-997.


Asunto(s)
Disfunción Cognitiva , Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Fenotipo , Humanos , Femenino , Masculino , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/patología , Adulto , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Persona de Mediana Edad , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/patología , Imagen por Resonancia Magnética , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Adulto Joven , Grosor de la Corteza Cerebral
4.
Epilepsia ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837428

RESUMEN

Wearable devices have attracted significant attention in epilepsy research in recent years for their potential to enhance patient care through improved seizure monitoring and forecasting. This narrative review presents a detailed overview of the current clinical state of the art while addressing how devices that assess autonomic nervous system (ANS) function reflect seizures and central nervous system (CNS) state changes. This includes a description of the interactions between the CNS and the ANS, including physiological and epilepsy-related changes affecting their dynamics. We first discuss technical aspects of measuring autonomic biosignals and considerations for using ANS sensors in clinical practice. We then review recent seizure detection and seizure forecasting studies, highlighting their performance and capability for seizure detection and forecasting using devices measuring ANS biomarkers. Finally, we address the field's challenges and provide an outlook for future developments.

5.
PLoS Comput Biol ; 19(3): e1010919, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867652

RESUMEN

The ability of neural circuits to integrate information over time and across different cortical areas is believed an essential ingredient for information processing in the brain. Temporal and spatial correlations in cortex dynamics have independently been shown to capture these integration properties in task-dependent ways. A fundamental question remains if temporal and spatial integration properties are linked and what internal and external factors shape these correlations. Previous research on spatio-temporal correlations has been limited in duration and coverage, thus providing only an incomplete picture of their interdependence and variability. Here, we use long-term invasive EEG data to comprehensively map temporal and spatial correlations according to cortical topography, vigilance state and drug dependence over extended periods of time. We show that temporal and spatial correlations in cortical networks are intimately linked, decline under antiepileptic drug action, and break down during slow-wave sleep. Further, we report temporal correlations in human electrophysiology signals to increase with the functional hierarchy in cortex. Systematic investigation of a neural network model suggests that these dynamical features may arise when dynamics are poised near a critical point. Our results provide mechanistic and functional links between specific measurable changes in the network dynamics relevant for characterizing the brain's changing information processing capabilities.


Asunto(s)
Anticonvulsivantes , Vigilia , Humanos , Anticonvulsivantes/farmacología , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
6.
PLoS Comput Biol ; 19(4): e1011094, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37104273

RESUMEN

[This corrects the article DOI: 10.1371/journal.pcbi.1010919.].

7.
Brain ; 146(8): 3500-3512, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37370200

RESUMEN

Infections are prevalent after spinal cord injury (SCI), constitute the main cause of death and are a rehabilitation confounder associated with impaired recovery. We hypothesize that SCI causes an acquired lesion-dependent (neurogenic) immune suppression as an underlying mechanism to facilitate infections. The international prospective multicentre cohort study (SCIentinel; protocol registration DRKS00000122; n = 111 patients) was designed to distinguish neurogenic from general trauma-related effects on the immune system. Therefore, SCI patient groups differing by neurological level, i.e. high SCI [thoracic (Th)4 or higher]; low SCI (Th5 or lower) and severity (complete SCI; incomplete SCI), were compared with a reference group of vertebral fracture (VF) patients without SCI. The primary outcome was quantitative monocytic Human Leukocyte Antigen-DR expression (mHLA-DR, synonym MHC II), a validated marker for immune suppression in critically ill patients associated with infection susceptibility. mHLA-DR was assessed from Day 1 to 10 weeks after injury by applying standardized flow cytometry procedures. Secondary outcomes were leucocyte subpopulation counts, serum immunoglobulin levels and clinically defined infections. Linear mixed models with multiple imputation were applied to evaluate group differences of logarithmic-transformed parameters. Mean quantitative mHLA-DR [ln (antibodies/cell)] levels at the primary end point 84 h after injury indicated an immune suppressive state below the normative values of 9.62 in all groups, which further differed in its dimension by neurological level: high SCI [8.95 (98.3% confidence interval, CI: 8.63; 9.26), n = 41], low SCI [9.05 (98.3% CI: 8.73; 9.36), n = 29], and VF without SCI [9.25 (98.3% CI: 8.97; 9.53), n = 41, P = 0.003]. Post hoc analysis accounting for SCI severity revealed the strongest mHLA-DR decrease [8.79 (95% CI: 8.50; 9.08)] in the complete, high SCI group, further demonstrating delayed mHLA-DR recovery [9.08 (95% CI: 8.82; 9.38)] and showing a difference from the VF controls of -0.43 (95% CI: -0.66; -0.20) at 14 days. Complete, high SCI patients also revealed constantly lower serum immunoglobulin G [-0.27 (95% CI: -0.45; -0.10)] and immunoglobulin A [-0.25 (95% CI: -0.49; -0.01)] levels [ln (g/l × 1000)] up to 10 weeks after injury. Low mHLA-DR levels in the range of borderline immunoparalysis (below 9.21) were positively associated with the occurrence and earlier onset of infections, which is consistent with results from studies on stroke or major surgery. Spinal cord injured patients can acquire a secondary, neurogenic immune deficiency syndrome characterized by reduced mHLA-DR expression and relative hypogammaglobulinaemia (combined cellular and humoral immune deficiency). mHLA-DR expression provides a basis to stratify infection-risk in patients with SCI.


Asunto(s)
Antígenos HLA-DR , Traumatismos de la Médula Espinal , Humanos , Estudios de Cohortes , Estudios Prospectivos , Traumatismos de la Médula Espinal/complicaciones , Síndrome , Monocitos
8.
BMC Cardiovasc Disord ; 24(1): 373, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026154

RESUMEN

BACKGROUND: Interventional valve implantation into the inferior vena cava (CAVI) lowers venous congestion in patients with tricuspid regurgitation (TR). We evaluated the impact of a reduction of abdominal venous congestion following CAVI on circulating immune cells and inflammatory mediators. METHODS: Patients with severe TR were randomized to optimal medical therapy (OMT) + CAVI (n = 8) or OMT (n = 10). In the OMT + CAVI group, an Edwards Sapien XT valve was implanted into the inferior vena cava. Immune cells and inflammatory mediators were measured in the peripheral blood at baseline and three-month follow-up. RESULTS: Leukocytes, monocytes, basophils, eosinophils, neutrophils, lymphocytes, B, T and natural killer cells and inflammatory markers (C-reactive protein, interferon-gamma, interleukin-2, -4, -5, -10, and tumor necrosis factor-alpha) did not change substantially between baseline and three-month follow-up within the OMT + CAVI and OMT group. CONCLUSION: The present data suggest that reduction of venous congestion following OMT + CAVI may not lead to substantial changes in systemic inflammation within a short-term follow-up. CLINICAL TRIAL REGISTRATION: NCT02387697.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Mediadores de Inflamación , Índice de Severidad de la Enfermedad , Insuficiencia de la Válvula Tricúspide , Vena Cava Inferior , Humanos , Masculino , Femenino , Vena Cava Inferior/diagnóstico por imagen , Vena Cava Inferior/inmunología , Mediadores de Inflamación/sangre , Resultado del Tratamiento , Insuficiencia de la Válvula Tricúspide/cirugía , Insuficiencia de la Válvula Tricúspide/sangre , Insuficiencia de la Válvula Tricúspide/diagnóstico por imagen , Insuficiencia de la Válvula Tricúspide/fisiopatología , Insuficiencia de la Válvula Tricúspide/etiología , Insuficiencia de la Válvula Tricúspide/inmunología , Persona de Mediana Edad , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Anciano , Biomarcadores/sangre , Factores de Tiempo , Prótesis Valvulares Cardíacas , Válvula Tricúspide/cirugía , Válvula Tricúspide/fisiopatología , Válvula Tricúspide/inmunología , Válvula Tricúspide/diagnóstico por imagen , Citocinas/sangre , Diseño de Prótesis , Estudios Prospectivos
9.
J Neuroinflammation ; 20(1): 30, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759861

RESUMEN

Patients with COVID-19 can have a variety of neurological symptoms, but the active involvement of central nervous system (CNS) in COVID-19 remains unclear. While routine cerebrospinal fluid (CSF) analyses in patients with neurological manifestations of COVID-19 generally show no or only mild inflammation, more detailed data on inflammatory mediators in the CSF of patients with COVID-19 are scarce. We studied the inflammatory response in paired CSF and serum samples of patients with COVID-19 (n = 38). Patients with herpes simplex virus encephalitis (HSVE, n = 10) and patients with non-inflammatory, non-neurodegenerative neurological diseases (n = 28) served as controls. We used proteomics, enzyme-linked immunoassays, and semiquantitative cytokine arrays to characterize inflammatory proteins. Autoantibody screening was performed with cell-based assays and native tissue staining. RNA sequencing of long-non-coding RNA and circular RNA was done to study the transcriptome. Proteomics on single protein level and subsequent pathway analysis showed similar yet strongly attenuated inflammatory changes in the CSF of COVID-19 patients compared to HSVE patients with, e.g., downregulation of the apolipoproteins and extracellular matrix proteins. Protein upregulation of the complement system, the serpin proteins pathways, and other proteins including glycoproteins alpha-2 and alpha-1 acid. Importantly, calculation of interleukin-6, interleukin-16, and CXCL10 CSF/serum indices suggest that these inflammatory mediators reach the CSF from the systemic circulation, rather than being produced within the CNS. Antibody screening revealed no pathological levels of known neuronal autoantibodies. When stratifying COVID-19 patients into those with and without bacterial superinfection as indicated by elevated procalcitonin levels, inflammatory markers were significantly (p < 0.01) higher in those with bacterial superinfection. RNA sequencing in the CSF revealed 101 linear RNAs comprising messenger RNAs, and two circRNAs being significantly differentially expressed in COVID-19 than in non-neuroinflammatory controls and neurodegenerative patients. Our findings may explain the absence of signs of intrathecal inflammation upon routine CSF testing despite the presence of SARS-CoV2 infection-associated neurological symptoms. The relevance of blood-derived mediators of inflammation in the CSF for neurological COVID-19 and post-COVID-19 symptoms deserves further investigation.


Asunto(s)
COVID-19 , Encefalitis por Herpes Simple , Sobreinfección , Humanos , Proteoma/metabolismo , ARN Viral/metabolismo , Sobreinfección/metabolismo , SARS-CoV-2 , Encéfalo/metabolismo , Inflamación/metabolismo , Encefalitis por Herpes Simple/líquido cefalorraquídeo , Mediadores de Inflamación/metabolismo
10.
Muscle Nerve ; 67(6): 515-521, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36928619

RESUMEN

INTRODUCTION/AIMS: In amyotrophic lateral sclerosis (ALS) caused by superoxide dismutase 1 (SOD1) gene mutations (SOD1-ALS), the antisense oligonucleotide tofersen had been investigated in a phase III study (VALOR) and subsequently introduced in an expanded access program. In this study we assess neurofilament light chain (NfL) before and during tofersen treatment. METHODS: In six SOD1-ALS patients treated with tofersen at three specialized ALS centers in Germany, NfL in cerebrospinal fluid (CSF-NfL) and/or serum (sNfL) were investigated using the ALS Functional Rating Scale Revised (ALSFRS-R) and ALS progression rate (ALS-PR), defined by monthly decline of ALSFRS-R. RESULTS: Three of the six SOD1-ALS patients reported a negative family history. Three patients harbored a homozygous c.272A > C, p.(Asp91Ala) mutation. These and two other patients showed slower progressing ALS (defined by ALS-PR <0.9), whereas one patient demonstrated rapidly progressing ALS (ALS-PR = 2.66). Mean treatment duration was 6.5 (range 5 to 8) months. In all patients, NfL decreased (mean CSF-NfL: -66%, range -52% to -86%; mean sNfL: -62%, range -36% to -84%). sNfL after 5 months of tofersen treatment was significantly reduced compared with the nearest pretreatment measurement (P = .017). ALS-PR decreased in two patients, whereas no changes in ALSFRS-R were observed in four participants who had very low ALS-PR or ALSFRS-R values before treatment. DISCUSSION: In this case series, the significant NfL decline after tofersen treatment confirmed its value as response biomarker in an expanded clinical spectrum of SOD1-ALS. Given the previously reported strong correlation between sNfL and ALS progression, the NfL treatment response supports the notion of tofersen having disease-modifying activity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Oligonucleótidos Antisentido/uso terapéutico , Superóxido Dismutasa-1/genética , Filamentos Intermedios , Biomarcadores , Proteínas de Neurofilamentos
11.
Proc Natl Acad Sci U S A ; 117(20): 11118-11125, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358198

RESUMEN

Cortical network functioning critically depends on finely tuned interactions to afford neuronal activity propagation over long distances while avoiding runaway excitation. This importance is highlighted by the pathological consequences and impaired performance resulting from aberrant network excitability in psychiatric and neurological diseases, such as epilepsy. Theory and experiment suggest that the control of activity propagation by network interactions can be adequately described by a branching process. This hypothesis is partially supported by strong evidence for balanced spatiotemporal dynamics observed in the cerebral cortex; however, evidence of a causal relationship between network interactions and cortex activity, as predicted by a branching process, is missing in humans. Here this cause-effect relationship is tested by monitoring cortex activity under systematic pharmacological reduction of cortical network interactions with antiepileptic drugs. This study reports that cortical activity cascades, presented by the propagating patterns of epileptic spikes, as well as temporal correlations decline precisely as predicted for a branching process. The results provide a missing link to the branching process theory of cortical network function with implications for understanding the foundations of cortical excitability and its monitoring in conditions like epilepsy.


Asunto(s)
Anticonvulsivantes/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Electrocorticografía , Epilepsia , Humanos , Redes Neurales de la Computación , Neuronas/fisiología
12.
Proc Natl Acad Sci U S A ; 117(51): 32606-32616, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288717

RESUMEN

Stroke is a leading cause of death and disability. Recovery depends on a delicate balance between inflammatory responses and immune suppression, tipping the scale between brain protection and susceptibility to infection. Peripheral cholinergic blockade of immune reactions fine-tunes this immune response, but its molecular regulators are unknown. Here, we report a regulatory shift in small RNA types in patient blood sequenced 2 d after ischemic stroke, comprising massive decreases of microRNA levels and concomitant increases of transfer RNA fragments (tRFs) targeting cholinergic transcripts. Electrophoresis-based size-selection followed by qRT-PCR validated the top six up-regulated tRFs in a separate cohort of stroke patients, and independent datasets of small and long RNA sequencing pinpointed immune cell subsets pivotal to these responses, implicating CD14+ monocytes in the cholinergic inflammatory reflex. In-depth small RNA targeting analyses revealed the most-perturbed pathways following stroke and implied a structural dichotomy between microRNA and tRF target sets. Furthermore, lipopolysaccharide stimulation of murine RAW 264.7 cells and human CD14+ monocytes up-regulated the top six stroke-perturbed tRFs, and overexpression of stroke-inducible tRF-22-WE8SPOX52 using a single-stranded RNA mimic induced down-regulation of immune regulator Z-DNA binding protein 1. In summary, we identified a "changing of the guards" between small RNA types that may systemically affect homeostasis in poststroke immune responses, and pinpointed multiple affected pathways, which opens new venues for establishing therapeutics and biomarkers at the protein and RNA level.


Asunto(s)
Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/inmunología , MicroARNs/inmunología , Sistema Colinérgico no Neuronal/inmunología , ARN de Transferencia/inmunología , Anciano , Animales , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/etiología , Inflamación/genética , Inflamación/inmunología , Accidente Cerebrovascular Isquémico/fisiopatología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Monocitos/fisiología , Sistema Colinérgico no Neuronal/genética , Estudios Prospectivos , Células RAW 264.7 , ARN de Transferencia/sangre , ARN de Transferencia/genética
13.
Nervenarzt ; 94(6): 519-524, 2023 Jun.
Artículo en Alemán | MEDLINE | ID: mdl-36414686

RESUMEN

In Germany, long-term video EEG as the gold standard for the diagnostics of epilepsy and other seizure disorders, is currently only available for inpatient monitoring in a limited number of specialized centers. These limited monitoring capacities and the large amount of associated time and work resources lead to a significant waiting time for this important diagnostic procedure nationwide. New portable sensor technology and automated data analysis methods are creating opportunities for gold standard long-term video EEG assessments in outpatient settings, which may help to resolve this barrier. Here, we report the results of a single-center feasibility study by implementing outpatient long-term video EEG (ALVEEG) as a diagnostic pathway in Germany. In the new diagnostic pathway, the use of innovative, portable video EEG monitoring systems along with artificial intelligence-assisted data analysis are intended to provide those patients affected by seizure disorders with a more rapid, efficient, and cross-sectoral access to gold standard diagnostics in the home environment. The diagnostics were well accepted by patients and clinicians and may represent a complementary option to inpatient monitoring to eliminate current bottlenecks in diagnostics and care.


Asunto(s)
Epilepsia , Pacientes Ambulatorios , Humanos , Estudios de Factibilidad , Inteligencia Artificial , Epilepsia/diagnóstico , Electroencefalografía , Alemania , Grabación en Video
14.
J Clin Immunol ; 42(6): 1111-1129, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35511314

RESUMEN

PURPOSE: Six to 19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. METHODS: We analyzed sera of 430 COVID-19 patients from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. RESULTS: The prevalence of neutralizing AABs to IFN-α and IFN-ω in COVID-19 patients from all cohorts was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected (max. WHO score 6-8), predominantly male (83%) patients (7.6%, 18/237 for IFN-α-AABs and 4.6%, 11/237 for IFN-ω-AABs in 237 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with lower probability of survival (7.7% versus 80.9% in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. CONCLUSION: IFN-AABs may serve as early biomarker for the development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.


Asunto(s)
COVID-19 , Interferón Tipo I , Anticuerpos Neutralizantes , Autoanticuerpos , COVID-19/diagnóstico , Enfermedad Crítica , Femenino , Humanos , Interferón-alfa/uso terapéutico , Masculino , Oxígeno , SARS-CoV-2
15.
Eur Respir J ; 60(1)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35618277

RESUMEN

BACKGROUND: Rapid and reliable diagnostic work-up of tuberculosis (TB) remains a major healthcare goal. In particular, discrimination of TB infection from TB disease with currently available diagnostic tools is challenging and time consuming. This study aimed at establishing a standardised blood-based assay that rapidly and reliably discriminates TB infection from TB disease based on multiparameter analysis of TB antigen-reactive CD4+ T-cells acting as sensors for TB stage-specific immune status. METHODS: 157 HIV-negative subjects with suspected TB infection or TB disease were recruited from local tertiary care hospitals in Berlin (Germany). Peripheral blood mononuclear cells were analysed for CD4+ T-cells reactive to the Mycobacterium tuberculosis antigens purified protein derivative and early secretory antigenic target 6 kDa/culture filtrate protein 10. The activation state of TB antigen-reactive T-cells, identified by surface expression of CD154, was evaluated according to the expression profile of proliferation marker Ki-67 and activation markers CD38 and HLA-DR. Using data from 81 subjects with clinically confirmed TB infection (n=34) or culture-proven pulmonary or extrapulmonary TB disease (n=47), 12 parameters were derived from the expression profile and integrated into a scoring system. RESULTS: Using the scoring system, our assay (TB-Flow Assay) allowed reliable discrimination of TB infection from both pulmonary and extrapulmonary TB disease with high sensitivity (90.9%) and specificity (93.3%) as was confirmed by Monte-Carlo cross-validation. CONCLUSION: With low time requirement, ease of sample collection, and high sensitivity and specificity both for pulmonary and extrapulmonary TB disease, we believe this novel standardised TB-Flow Assay will improve the work-up of patients with suspected TB disease, supporting rapid TB diagnosis and facilitating treatment decisions.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Antígenos Bacterianos , Linfocitos T CD4-Positivos , Humanos , Leucocitos Mononucleares , Tuberculosis/diagnóstico
16.
Rheumatology (Oxford) ; 61(8): 3396-3400, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34849605

RESUMEN

OBJECTIVES: To evaluate and compare the diagnostic accuracy of SIGLEC1, a surrogate marker of type I IFN, with established biomarkers in an inception cohort of systemic lupus erythematosus (SLE). METHODS: SIGLEC1 was analysed by flow cytometry in 232 patients referred to our institution with suspected SLE between October 2015 and September 2020. RESULTS: SLE was confirmed in 76 of 232 patients (32.8 %) according to the 2019 EULAR/ACR classification criteria and their SIGLEC1 values were significantly higher compared with patients without SLE (P <0.0001). A sensitivity of 98.7 %, a specificity of 82.1 %, a negative predictive value (NPV) of 99.2 % and a positive predictive value (PPV) of 72.8 % were calculated for SIGLEC1. Adjusted to the highest reported prevalence of SLE, the NPV and PPV were >99.9 % and 0.1 %, respectively. Using receiver operating characteristic (ROC) analysis and DeLong testing, the area under the curve (AUC) for SIGLEC1 (AUC = 0.95) was significantly higher than for ANA (AUC = 0.88, P = 0.031), C3 (AUC = 0.83, P = 0.001) and C4 (AUC = 0.83, P = 0.002) but not for anti-dsDNA antibodies (AUC = 0.90, P = 0.163). CONCLUSION: IFN-I pathway activation is detectable in almost all newly diagnosed SLE patients. Thus, a negative test result for SIGLEC1 is powerful to exclude SLE in suspected cases.


Asunto(s)
Anticuerpos Antinucleares , Lupus Eritematoso Sistémico , Autoanticuerpos , Biomarcadores , Humanos , Lupus Eritematoso Sistémico/diagnóstico
17.
Eur J Neurol ; 29(6): 1847-1854, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35098616

RESUMEN

BACKGROUND AND PURPOSE: A fraction of patients with antibody-mediated autoimmune diseases remain unresponsive to first-/second-line and sometimes even to escalation immunotherapies. Because these patients are still affected by poor outcome and increased mortality, we investigated the safety and efficacy of the plasma cell-depleting anti-CD38 antibody daratumumab in life-threatening, antibody-mediated autoimmune diseases. METHODS: In this retrospective, single-center case series, seven patients with autoantibody-driven neurological autoimmune diseases (autoimmune encephalitis, n = 5; neurofascin antibody-associated chronic inflammatory demyelinating polyneuropathy associated with sporadic late onset nemaline myopathy, n = 1; seronegative myasthenia gravis, n = 1) unresponsive to a median of four (range = 4-9) immunotherapies were treated with four to 20 cycles of 16 mg/kg daratumumab. RESULTS: Daratumumab allowed a substantial clinical improvement in all patients, as measured by modified Rankin Scale (mRS; before treatment: mRS =5, n = 7; after treatment: median mRS =4, range = 0-5), Clinical Assessment Scale in Autoimmune Encephalitis (from median 21 to 3 points, n = 5), Inflammatory Neuropathy Cause and Treatment disability score (from 7 to 0 points, n = 1), and Quantitative Myasthenia Gravis score (from 16 to 8 points, n = 1). Daratumumab induced a substantial reduction of disease-specific autoreactive antibodies, total IgG (serum, 66%, n = 7; cerebrospinal fluid, 58%, n = 5), and vaccine-induced titers for rubella (50%) and tetanus toxoid (74%). Treatment-related toxicities Grade 3 or higher occurred in five patients, including one death. CONCLUSIONS: Our findings suggest that daratumumab provided a clinically relevant depletion of autoreactive long-lived plasma cells, identifying plasma cell-targeted therapies as promising escalation therapy for highly active, otherwise treatment-refractory autoantibody-mediated neurological diseases.


Asunto(s)
Encefalitis , Miastenia Gravis , Enfermedades del Sistema Nervioso , Neurología , Anticuerpos Monoclonales , Autoanticuerpos , Enfermedad de Hashimoto , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Estudios Retrospectivos
18.
Clin Exp Rheumatol ; 40(2): 433-442, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33124555

RESUMEN

OBJECTIVES: To describe a German cohort of patients with juvenile dermatomyositis (JDM) and to evaluate clinical manifestations, disease course and prognosis in JDM patients with a certain myositis-specific autoantibody. METHODS: Cross-sectional data on patients with JDM documented in the National Paediatric Rheumatologic Database in Germany between 2014 and 2016 were analysed. In a subgroup of the cohort, MSAs were determined with a commercial multiplex array, and a retrospective chart review was conducted to specify the clinical phenotype and patient outcome. RESULTS: The total cohort consisted of 196 patients with JDM (mean age 12.2±4.0 years, mean disease duration 5.1±3.8 years, 70% female). Apart from typical skin changes and muscle weakness, 41% of patients also had arthritis and/or contractures, 27% had calcinosis and approximately 10% had interstitial lung disease. Immunoblot testing was performed on the sera of 91 (46%) patients, detecting MSAs in 44% of patients. Patient groups with specific MSAs differed in clinical characteristics such as calcinosis, dysphagia, and lung and joint involvement. The extent of muscle weakness evaluated by the Childhood Myositis Assessment Scale was significantly associated with an increased level of creatine kinase. Patients with anti-MDA5 were particularly affected by polyarthritis of the small joints. After 5 years, 51 patients of the MSA cohort (56.0%) achieved an inactive disease state, 12/51 (23.5%) were off therapy. CONCLUSIONS: Patients with JDM in Germany show a broad spectrum of clinical manifestations that can be grouped into homogeneous groups using MSA, which also helps to predict the course and prognosis of the disease.


Asunto(s)
Dermatomiositis , Miositis , Adolescente , Autoanticuerpos , Niño , Estudios Transversales , Dermatomiositis/complicaciones , Femenino , Humanos , Masculino , Miositis/complicaciones , Fenotipo , Estudios Retrospectivos
19.
Epilepsy Behav ; 129: 108635, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278938

RESUMEN

Patient-generated health data provide a great opportunity for more detailed ambulatory monitoring and more personalized treatments in many diseases. In epilepsy, robust diagnostics applicable to the ambulatory setting are needed as diagnosis and treatment decisions in current clinical practice are primarily reliant on patient self-reports, which are often inaccurate. Recent work using wearable devices has focused on methods to detect and forecast epileptic seizures. Whether wearable device signals may also contain information about the effect of antiseizure medications (ASMs), which may ultimately help to better monitor their efficacy, has not been evaluated yet. Here we systematically investigated the effect of ASMs on different data modalities (electrodermal activity, EDA, heart rate, HR, and heart rate variability, HRV) simultaneously recorded by a wearable device in 48 patients with epilepsy over several days in the epilepsy long-term monitoring unit at a tertiary hospital. All signals exhibited characteristic diurnal variations. HRV, but not HR or EDA-based metrics, were reduced by ASMs. By assessing multiple signals related to the autonomic nervous system simultaneously, our results provide novel insights into the effects of ASMs on the sympathetic and parasympathetic interplay in the setting of epilepsy and indicate the potential of easy-to-wear wearable devices for monitoring ASM action. Future work using longer data may investigate these metrics on multidien cycles and their utility for detecting seizures, assessing seizure risk, or informing treatment interventions.


Asunto(s)
Epilepsia , Dispositivos Electrónicos Vestibles , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Respuesta Galvánica de la Piel , Frecuencia Cardíaca , Humanos , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico
20.
Stroke ; 52(1): 325-330, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33280547

RESUMEN

BACKGROUND AND PURPOSE: Several clinical scoring systems as well as biomarkers have been proposed to predict stroke-associated pneumonia (SAP). We aimed to externally and competitively validate SAP scores and hypothesized that 5 selected biomarkers would improve performance of these scores. METHODS: We pooled the clinical data of 2 acute stroke studies with identical data assessment: STRAWINSKI and PREDICT. Biomarkers (ultrasensitive procalcitonin; mid-regional proadrenomedullin; mid-regional proatrionatriuretic peptide; ultrasensitive copeptin; C-terminal proendothelin) were measured from hospital admission serum samples. A literature search was performed to identify SAP prediction scores. We then calculated multivariate regression models with the individual scores and the biomarkers. Areas under receiver operating characteristic curves were used to compare discrimination of these scores and models. RESULTS: The combined cohort consisted of 683 cases, of which 573 had available backup samples to perform the biomarker analysis. Literature search identified 9 SAP prediction scores. Our data set enabled us to calculate 5 of these scores. The scores had area under receiver operating characteristic curve of 0.543 to 0.651 for physician determined SAP, 0.574 to 0.685 for probable and 0.689 to 0.811 for definite SAP according to Pneumonia in Stroke Consensus group criteria. Multivariate models of the scores with biomarkers improved virtually all predictions, but mostly in the range of an area under receiver operating characteristic curve delta of 0.05. CONCLUSIONS: All SAP prediction scores identified patients who would develop SAP with fair to strong capabilities, with better discrimination when stricter criteria for SAP diagnosis were applied. The selected biomarkers provided only limited added predictive value, currently not warranting addition of these markers to prediction models. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01264549 and NCT01079728.


Asunto(s)
Biomarcadores/sangre , Neumonía/sangre , Neumonía/etiología , Accidente Cerebrovascular/complicaciones , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Valor Predictivo de las Pruebas , Pronóstico , Curva ROC , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA