Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Blood ; 141(26): 3166-3183, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37084385

RESUMEN

Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Factor 4F Eucariótico de Iniciación/genética , Prohibitinas , Genes myc , ARN Mensajero/genética
2.
EMBO J ; 43(20): 4444-4450, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38664540
3.
Nature ; 548(7669): 549-554, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28813411

RESUMEN

The folate-driven one-carbon (1C) cycle is a fundamental metabolic hub in cells that enables the synthesis of nucleotides and amino acids and epigenetic modifications. This cycle might also release formaldehyde, a potent protein and DNA crosslinking agent that organisms produce in substantial quantities. Here we show that supplementation with tetrahydrofolate, the essential cofactor of this cycle, and other oxidation-prone folate derivatives kills human, mouse and chicken cells that cannot detoxify formaldehyde or that lack DNA crosslink repair. Notably, formaldehyde is generated from oxidative decomposition of the folate backbone. Furthermore, we find that formaldehyde detoxification in human cells generates formate, and thereby promotes nucleotide synthesis. This supply of 1C units is sufficient to sustain the growth of cells that are unable to use serine, which is the predominant source of 1C units. These findings identify an unexpected source of formaldehyde and, more generally, indicate that the detoxification of this ubiquitous endogenous genotoxin creates a benign 1C unit that can sustain essential metabolism.


Asunto(s)
Carbono/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Formaldehído/química , Formaldehído/metabolismo , Redes y Vías Metabólicas , Mutágenos/química , Mutágenos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Animales , Carbono/deficiencia , Línea Celular , Pollos , Coenzimas/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Daño del ADN , Reparación del ADN , Humanos , Inactivación Metabólica , Ratones , Nucleótidos/biosíntesis , Oxidación-Reducción , Serina/química , Serina/metabolismo , Tetrahidrofolatos/metabolismo
5.
New Phytol ; 225(1): 250-267, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31487399

RESUMEN

The key basic helix-loop-helix (bHLH) transcription factor in iron (Fe) uptake, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), is controlled by multiple signaling pathways, important to adjust Fe acquisition to growth and environmental constraints. FIT protein exists in active and inactive protein pools, and phosphorylation of serine Ser272 in the C-terminus, a regulatory domain of FIT, provides a trigger for FIT activation. Here, we use phospho-mutant activity assays and study phospho-mimicking and phospho-dead mutations of three additional predicted phosphorylation sites, namely at Ser221 and at tyrosines Tyr238 and Tyr278, besides Ser 272. Phospho-mutations at these sites affect FIT activities in yeast, plant, and mammalian cells. The diverse array of cellular phenotypes is seen at the level of cellular localization, nuclear mobility, homodimerization, and dimerization with the FIT-activating partner bHLH039, promoter transactivation, and protein stability. Phospho-mimicking Tyr mutations of FIT disturb fit mutant plant complementation. Taken together, we provide evidence that FIT is activated through Ser and deactivated through Tyr site phosphorylation. We therefore propose that FIT activity is regulated by alternative phosphorylation pathways.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bioensayo/métodos , Mutación/genética , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Células CHO , Cricetinae , Cricetulus , Modelos Biológicos , Fosforilación , Fosfotirosina/metabolismo , Multimerización de Proteína , Estabilidad Proteica , Activación Transcripcional/genética
6.
J Biol Chem ; 291(8): 3932-46, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26679997

RESUMEN

Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases.


Asunto(s)
Regulación de la Expresión Génica , Macrófagos/metabolismo , Monocinas/biosíntesis , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Succinatos/metabolismo , Animales , Línea Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Activación de Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , Oxidación-Reducción/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
7.
STAR Protoc ; 5(4): 103401, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39425931

RESUMEN

Herein, we present an ex vivo approach to study glioblastoma (GBM) cell motility in viable mouse brain slice cultures, closely mimicking in vivo features. We detail the preparation and culturing of mouse brain slices followed by tumor cell injection, allowing for the analysis of different aspects of the cellular migration and invasion process. Our assay facilitates testing diverse perturbations including genetic modifications and treatments in a physiological context. Thus, the protocol provides a compromise between in vitro assays and in vivo models. For complete details on the use and execution of this protocol, please refer to Delbrouck et al.1 and Schuster et al.2.

8.
Cell Rep ; 43(3): 113868, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421868

RESUMEN

Modeling tumor metabolism in vitro remains challenging. Here, we used galactose as an in vitro tool compound to mimic glycolytic limitation. In contrast to the established idea that high glycolytic flux reduces pyruvate kinase isozyme M2 (PKM2) activity to support anabolic processes, we have discovered that glycolytic limitation also affects PKM2 activity. Surprisingly, despite limited carbon availability and energetic stress, cells induce a near-complete block of PKM2 to divert carbons toward serine metabolism. Simultaneously, TCA cycle flux is sustained, and oxygen consumption is increased, supported by glutamine. Glutamine not only supports TCA cycle flux but also serine synthesis via distinct mechanisms that are directed through PKM2 inhibition. Finally, deleting mitochondrial one-carbon (1C) cycle reversed the PKM2 block, suggesting a potential formate-dependent crosstalk that coordinates mitochondrial 1C flux and cytosolic glycolysis to support cell survival and proliferation during nutrient-scarce conditions.


Asunto(s)
Glutamina , Piruvato Quinasa , Piruvato Quinasa/metabolismo , Glutamina/metabolismo , Glucólisis , Carbono , Serina/metabolismo
9.
iScience ; 27(3): 109173, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38496294

RESUMEN

Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation.

10.
Cell Commun Signal ; 11(1): 34, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23683503

RESUMEN

: Parkinson's disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability.In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD.

11.
Sci Adv ; 9(34): eadd3643, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37611105

RESUMEN

Dissolution dynamic nuclear polarization (dDNP) increases the sensitivity of magnetic resonance imaging by more than 10,000 times, enabling in vivo metabolic imaging to be performed noninvasively in real time. Here, we are developing a group of dDNP polarized tracers based on nicotinamide (NAM). We synthesized 1-15N-NAM and 1-15N nicotinic acid and hyperpolarized them with dDNP, reaching (13.0 ± 1.9)% 15N polarization. We found that the lifetime of hyperpolarized 1-15N-NAM is strongly field- and pH-dependent, with T1 being as long as 41 s at a pH of 12 and 1 T while as short as a few seconds at neutral pH and fields below 1 T. The remarkably short 1-15N lifetime at low magnetic fields and neutral pH drove us to establish a unique pH neutralization procedure. Using 15N dDNP and an inexpensive rodent imaging probe designed in-house, we acquired a 15N MRI of 1-15N-NAM (previously hyperpolarized for more than an hour) in less than 1 s.


Asunto(s)
2-Naftilamina , Niacinamida , Niacinamida/farmacología , Isótopos de Nitrógeno
12.
Blood Cancer Discov ; 4(1): 54-77, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36108149

RESUMEN

Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE: sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Vesículas Extracelulares , Leucemia Linfocítica Crónica de Células B , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/genética , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Transcriptoma , Inmunidad , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Microambiente Tumoral/genética
13.
Cell Rep ; 42(9): 113034, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37651228

RESUMEN

Metabolic rewiring is essential for cancer onset and progression. We previously showed that one-carbon metabolism-dependent formate production often exceeds the anabolic demand of cancer cells, resulting in formate overflow. Furthermore, we showed that increased extracellular formate concentrations promote the in vitro invasiveness of glioblastoma cells. Here, we substantiate these initial observations with ex vivo and in vivo experiments. We also show that exposure to exogeneous formate can prime cancer cells toward a pro-invasive phenotype leading to increased metastasis formation in vivo. Our results suggest that the increased local formate concentration within the tumor microenvironment can be one factor to promote metastases. Additionally, we describe a mechanistic interplay between formate-dependent increased invasiveness and adaptations of lipid metabolism and matrix metalloproteinase activity. Our findings consolidate the role of formate as pro-invasive metabolite and warrant further research to better understand the interplay between formate and lipid metabolism.


Asunto(s)
Glioblastoma , Metabolismo de los Lípidos , Humanos , Formiatos , Invasividad Neoplásica , Microambiente Tumoral
14.
Cell Rep ; 42(3): 112153, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36848289

RESUMEN

Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.


Asunto(s)
Ácido Cítrico , Células Th17 , Ratones , Animales , Citratos , Oxidorreductasas , Lípidos , Piruvatos , Mamíferos
15.
Nat Metab ; 5(4): 642-659, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37012496

RESUMEN

Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.


Asunto(s)
Metilenotetrahidrofolato Deshidrogenasa (NADP) , Neoplasias , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ácido Fólico/metabolismo , Formiatos , Purinas , Tetrahidrofolatos
16.
Nat Cancer ; 4(5): 648-664, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37169842

RESUMEN

The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.


Asunto(s)
Glioblastoma , Humanos , Astrocitos/metabolismo , Astrocitos/patología , Proteína GAP-43/metabolismo , Proteína GAP-43/uso terapéutico , Axones/metabolismo , Axones/patología , Línea Celular Tumoral , Regeneración Nerviosa , Mitocondrias/metabolismo , Mitocondrias/patología
17.
Plant Physiol ; 157(4): 2154-66, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21972265

RESUMEN

Understanding iron (Fe) sensing and regulation is important for targeting key genes for important nutritional traits like Fe content. The basic helix-loop-helix transcription factor FIT (for FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) controls Fe acquisition genes in dicot roots. Posttranscriptional regulation of transcription factors allows rapid adaptation to cellular changes and was also described for FIT. However, the mechanisms behind this regulation of FIT were for a long time not known. Here, we studied the posttranscriptional control mechanisms of FIT in Arabidopsis (Arabidopsis thaliana) and identified nitric oxide as a stabilizing stimulus for FIT protein abundance. Using cycloheximide, we confirmed that the level of FIT protein was regulated by way of protein turnover in wild-type and hemagglutinin-FIT plants. Upon cycloheximide treatment, FIT activity was hardly compromised, since Fe deficiency genes like IRON-REGULATED TRANSPORTER1 and FERRIC REDUCTASE OXIDASE2 were still inducible by Fe deficiency. A small pool of "active" FIT was sufficient for the induction of Fe deficiency downstream responses. Nitric oxide inhibitors caused a decrease of FIT protein abundance and, in the wild type, also a decrease in FIT activity. This decrease of FIT protein levels was reversed by the proteasomal inhibitor MG132, suggesting that in the presence of nitric oxide FIT protein was less likely to be a target of proteasomal degradation. Independent of FIT transcription, FIT protein stability and FIT protein activity, therefore, were targets of control mechanisms in response to Fe and nitric oxide. We summarize our results in a model that explains the different steps of FIT regulation integrating the plant signals that control FIT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hierro/farmacología , Óxido Nítrico/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cicloheximida/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Hierro/metabolismo , Leupeptinas/farmacología , Ratones , Modelos Biológicos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Inhibidores de la Síntesis de la Proteína/farmacología , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo
18.
Nat Commun ; 13(1): 2699, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577770

RESUMEN

Metastasis is the most common cause of death in cancer patients. Canonical drugs target mainly the proliferative capacity of cancer cells, which leaves slow-proliferating, persistent cancer cells unaffected. Metabolic determinants that contribute to growth-independent functions are still poorly understood. Here we show that antifolate treatment results in an uncoupled and autarkic mitochondrial one-carbon (1C) metabolism during cytosolic 1C metabolism impairment. Interestingly, antifolate dependent growth-arrest does not correlate with decreased migration capacity. Therefore, using methotrexate as a tool compound allows us to disentangle proliferation and migration to profile the metabolic phenotype of migrating cells. We observe that increased serine de novo synthesis (SSP) supports mitochondrial serine catabolism and inhibition of SSP using the competitive PHGDH-inhibitor BI-4916 reduces cancer cell migration. Furthermore, we show that sole inhibition of mitochondrial serine catabolism does not affect primary breast tumor growth but strongly inhibits pulmonary metastasis. We conclude that mitochondrial 1C metabolism, despite being dispensable for proliferative capacities, confers an advantage to cancer cells by supporting their motility potential.


Asunto(s)
Neoplasias de la Mama , Antagonistas del Ácido Fólico , Neoplasias de la Mama/metabolismo , Ciclo del Carbono , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Mitocondrias/metabolismo , Serina/metabolismo
19.
Nat Metab ; 4(5): 589-607, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35618940

RESUMEN

Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-ß (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.


Asunto(s)
Oxidorreductasas , Enfermedad de Parkinson , Proteína Desglicasa DJ-1 , Piruvatos , Linfocitos T Reguladores , Envejecimiento , Animales , Homeostasis , Ratones , Oxidorreductasas/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/genética , Piruvatos/metabolismo , Linfocitos T Reguladores/metabolismo
20.
Nat Metab ; 4(4): 458-475, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437333

RESUMEN

The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Bacterias , Neoplasias Colorrectales/metabolismo , Formiatos , Fusobacterium nucleatum , Humanos , Ratones , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA