Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 406: 115213, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877659

RESUMEN

The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 µm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 µM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Cardiotoxinas/efectos adversos , Corazón/efectos de los fármacos , Modelos Biológicos , Técnicas de Cultivo de Tejidos , Adulto , Anciano , Animales , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Doxorrubicina/efectos adversos , Femenino , Corazón/fisiología , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Persona de Mediana Edad , Porcinos , Trastuzumab/efectos adversos
2.
Commun Biol ; 5(1): 934, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085302

RESUMEN

There is need for a reliable in vitro system that can accurately replicate the cardiac physiological environment for drug testing. The limited availability of human heart tissue culture systems has led to inaccurate interpretations of cardiac-related drug effects. Here, we developed a cardiac tissue culture model (CTCM) that can electro-mechanically stimulate heart slices with physiological stretches in systole and diastole during the cardiac cycle. After 12 days in culture, this approach partially improved the viability of heart slices but did not completely maintain their structural integrity. Therefore, following small molecule screening, we found that the incorporation of 100 nM tri-iodothyronine (T3) and 1 µM dexamethasone (Dex) into our culture media preserved the microscopic structure of the slices for 12 days. When combined with T3/Dex treatment, the CTCM system maintained the transcriptional profile, viability, metabolic activity, and structural integrity for 12 days at the same levels as the fresh heart tissue. Furthermore, overstretching the cardiac tissue induced cardiac hypertrophic signaling in culture, which provides a proof of concept for the ability of the CTCM to emulate cardiac stretch-induced hypertrophic conditions. In conclusion, CTCM can emulate cardiac physiology and pathophysiology in culture for an extended time, thereby enabling reliable drug screening.


Asunto(s)
Biomimética , Corazón , Cardiomegalia , Medios de Cultivo , Humanos , Sístole
3.
Front Pharmacol ; 12: 617922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613292

RESUMEN

Translational research in the cardiovascular field is hampered by the unavailability of cardiac models that can recapitulate organ-level physiology of the myocardium. Outside the body, cardiac tissue undergoes rapid dedifferentiation and maladaptation in culture. There is an ever-growing demand for preclinical platforms that allow for accurate, standardized, long-term, and rapid drug testing. Heart slices is an emerging technology that solves many of the problems with conventional myocardial culture systems. Heart slices are thin (<400 µm) slices of heart tissue from the adult ventricle. Several recent studies using heart slices have shown their ability to maintain the adult phenotype for prolonged periods in a multi cell-type environment. Here, we review the current status of cardiac culture systems and highlight the unique advantages offered by heart slices in the light of recent efforts in developing physiologically relevant heart slice culture systems.

4.
J Vis Exp ; (157)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32250357

RESUMEN

Many novel drugs fail in clinical studies due to cardiotoxic side effects as the currently available in vitro assays and in vivo animal models poorly predict human cardiac liabilities, posing a multi-billion-dollar burden on the pharmaceutical industry. Hence, there is a worldwide unmet medical need for better approaches to identify drug cardiotoxicity before undertaking costly and time consuming 'first in man' trials. Currently, only immature cardiac cells (human induced pluripotent stem cell-derived cardiomyocytes [hiPSC-CMs]) are used to test therapeutic efficiency and drug toxicity as they are the only human cardiac cells that can be cultured for prolonged periods required to test drug efficacy and toxicity. However, a single cell type cannot replicate the phenotype of the complex 3D heart tissue which is formed of multiple cell types. Importantly, the effect of drugs needs to be tested on adult cardiomyocytes, which have different characteristics and toxicity responses compared to immature hiPSC-CMs. Culturing human heart slices is a promising model of intact human myocardium. This technology provides access to a complete multicellular system that mimics the human heart tissue and reflects the physiological or pathological conditions of the human myocardium. Recently, through optimization of the culture media components and the culture conditions to include continuous electrical stimulation at 1.2 Hz and intermittent oxygenation of the culture medium, we developed a new culture system setup that preserves viability and functionality of human and pig heart slices for 6 days in culture. In the current protocol, we are detailing the method for slicing and culturing pig heart as an example. The same protocol is used to culture slices from human, dog, sheep, or cat hearts. This culture system has the potential to become a powerful predictive human in situ model for acute cardiotoxicity testing that closes the gap between preclinical and clinical testing results.


Asunto(s)
Cardiotoxicidad , Corazón/efectos de los fármacos , Técnicas de Cultivo de Órganos , Animales , Células Cultivadas , Humanos , Modelos Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ovinos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA