Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Infect Immun ; 92(5): e0009924, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38557196

RESUMEN

The mouse pathogen Citrobacter rodentium is utilized as a model organism for studying infections caused by the human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and to elucidate mechanisms of mucosal immunity. In response to C. rodentium infection, innate lymphoid cells and T cells secrete interleukin (IL)-22, a cytokine that promotes mucosal barrier function. IL-22 plays a pivotal role in enabling mice to survive and recover from C. rodentium infection, although the exact mechanisms involved remain incompletely understood. Here, we investigated whether particular components of the host response downstream of IL-22 contribute to the cytokine's protective effects during C. rodentium infection. In line with previous research, mice lacking the IL-22 gene (Il22-/- mice) were highly susceptible to C. rodentium infection. To elucidate the role of specific antimicrobial proteins modulated by IL-22, we infected the following knockout mice: S100A9-/- (calprotectin), Lcn2-/- (lipocalin-2), Reg3b-/- (Reg3ß), Reg3g-/- (Reg3γ), and C3-/- (C3). All knockout mice tested displayed a considerable level of resistance to C. rodentium infection, and none phenocopied the lethality observed in Il22-/- mice. By investigating another arm of the IL-22 response, we observed that C. rodentium-infected Il22-/- mice exhibited an overall decrease in gene expression related to intestinal barrier integrity as well as significantly elevated colonic inflammation, gut permeability, and pathogen levels in the spleen. Taken together, these results indicate that host resistance to lethal C. rodentium infection may depend on multiple antimicrobial responses acting in concert, or that other IL-22-regulated processes, such as tissue repair and maintenance of epithelial integrity, play crucial roles in host defense to attaching and effacing pathogens.


Asunto(s)
Citrobacter rodentium , Infecciones por Enterobacteriaceae , Interleucina-22 , Animales , Ratones , Citrobacter rodentium/inmunología , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Interleucina-22/genética , Interleucina-22/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Pancreatitis/genética , Proteínas Asociadas a Pancreatitis/metabolismo , Proteínas Asociadas a Pancreatitis/inmunología
2.
Elife ; 132024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193987

RESUMEN

The chemokine CCL28 is highly expressed in mucosal tissues, but its role during infection is not well understood. Here, we show that CCL28 promotes neutrophil accumulation in the gut of mice infected with Salmonella and in the lung of mice infected with Acinetobacter. Neutrophils isolated from the infected mucosa expressed the CCL28 receptors CCR3 and, to a lesser extent, CCR10, on their surface. The functional consequences of CCL28 deficiency varied between the two infections: Ccl28-/- mice were highly susceptible to Salmonella gut infection but highly resistant to otherwise lethal Acinetobacter lung infection. In vitro, unstimulated neutrophils harbored pre-formed intracellular CCR3 that was rapidly mobilized to the cell surface following phagocytosis or inflammatory stimuli. Moreover, CCL28 stimulation enhanced neutrophil antimicrobial activity, production of reactive oxygen species, and formation of extracellular traps, all processes largely dependent on CCR3. Consistent with the different outcomes in the two infection models, neutrophil stimulation with CCL28 boosted the killing of Salmonella but not Acinetobacter. CCL28 thus plays a critical role in the immune response to mucosal pathogens by increasing neutrophil accumulation and activation, which can enhance pathogen clearance but also exacerbate disease depending on the mucosal site and the infectious agent.


Asunto(s)
Quimiocinas CC , Neutrófilos , Animales , Neutrófilos/inmunología , Ratones , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Acinetobacter/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonella/inmunología , Receptores CCR3/metabolismo , Receptores CCR3/genética , Membrana Mucosa/inmunología , Membrana Mucosa/microbiología
3.
Braz J Microbiol ; 54(1): 1-14, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36469301

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is an important gastrointestinal pathogen known for its ability to cause hemorrhagic colitis and induce hemolytic-uremic syndrome. The inner membrane QseC histidine kinase sensor has shown to be an important regulator of the locus of enterocyte effacement (LEE) island, where important EHEC key virulence genes are located. However, the QseC role during EHEC infection in human microbiota remains unknown. Herein, using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), we investigated whether the QseC sensor has a role in human microbiota modulation by EHEC in a dynamic model. Our data demonstrated that the QseC sensor modulates human microbiota during EHEC infection, and its absence leads to an increase in Lactobacillaceae and Bifidobacterium genus predominance, although non-effect on Bacteroides genus by EHEC strains was observed. In co-culture, the Lactobacillus acidophilus has affected EHEC growth and impaired the EHEC growth under space-niche competition, although no growth difference was observed in the QseC sensor presence. Also, differences in EHEC growth were not detected in competition with Bacteroides thetaiotaomicron and EHEC strains did not affect B. thetaiotaomicron growth either. When investigating the mechanisms behind the SHIME results, we found that hcp-2 expression for the type 6 secretion system, known to be involved in bacterial competition, is under QseC sensor regulation beneath different environmental signals, such as glucose and butyrate. Our findings broaden the knowledge about the QseC sensor in modulating the human microbiota and its importance for EHEC pathogenesis.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Microbiota , Humanos , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Escherichia coli Enterohemorrágica/genética , Infecciones por Escherichia coli/microbiología
4.
Front Cell Infect Microbiol ; 10: 548492, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33409157

RESUMEN

Genetic plasticity promotes evolution and a vast diversity in Escherichia coli varying from avirulent to highly pathogenic strains, including the emergence of virulent hybrid microorganism. This ability also contributes to the emergence of antimicrobial resistance. These hybrid pathogenic E. coli (HyPEC) are emergent threats, such as O104:H4 from the European outbreak in 2011, aggregative adherent bacteria with the potent Shiga-toxin. Here, we briefly revisited the details of these E. coli classic and hybrid pathogens, the increase in antimicrobial resistance in the context of a genetically empowered multifaceted and versatile bug and the growing need to advance alternative therapies to fight these infections.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Alemania , Humanos , Toxina Shiga
5.
Braz J Microbiol ; 50(4): 881-886, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31456170

RESUMEN

Enterohemorrhagic (EHEC) and enteropathogenic Escherichia coli (EPEC) are human intestinal pathogens of clinical importance and their mechanism of pathogenicity is widely studied. However, both EHEC and EPEC poorly infect mice, whereas they do not develop important characteristics of the disease, hindering studies about mechanisms of virulence in vivo. Citrobacter rodentium exhibits high similarity of its genes with these human pathogens, including the island of pathogenicity Locus of Enterocyte Effacement (LEE). Therefore, C. rodentium becomes an alternative in vivo model for microorganisms that harbor LEE. The QseC directly regulates LEE as well as virulence mechanisms on these pathogens. Here, we report a novel surface motility in C. rodentium QseC-mediated in this non-flagellated bacterium. Moreover, we show norepinephrine and ethanolamine act as environmental signals in this movement. Hence, this study clarifies a novel role of the sensor QseC in completely unreported motility process of C. rodentium.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/citología , Citrobacter rodentium/metabolismo , Etanolamina/metabolismo , Norepinefrina/metabolismo , Proteínas Bacterianas/genética , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidad , Infecciones por Enterobacteriaceae/microbiología , Islas Genómicas , Humanos , Virulencia
6.
Braz. J. Pharm. Sci. (Online) ; 54(2): e17438, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-951921

RESUMEN

ABSTRACT Bone substitutes based on hydroxyapatite (HA) and Bonefill® (BO - inorganic bovine bone) associated with poly(lactic-co-glycolic acid) (PLGA) (HA/PLGA and BO/PLGA) were evaluated concerning cytotoxicity, genotoxicity and mutagenicity as potential candidates for bone repair. The materials were developed and provided by Bionnovation Biomedical Products Ltda. Eluates from these bone substitutes were prepared for toxicity evaluations using eukaryotic cell cultures. HA/PLGA was used as a comparison for Bonefill®. Cell viability was evaluated by XTT assay and surviving fraction was calculated for clonogenic survival. Additionally, tail moment was used to assess genotoxicity (comet assay). The frequencies of binucleated cells with micronucleus (FBMN), micronucleus (FMN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) were analysed by cytokinesis-block micronucleus assay (CBMN assay). Results showed no statistical difference in cell viability compared with negative control (NC) The eluates did not promote delayed cytotoxicity whereas the surviving fraction rate for cultured cells was similar to NC. Furthermore, no genotoxicity or mutagenicity effects were observed for cultured cells with the Bonefill/PLGA and HA/PLGA eluates. In conclusion, the negative cytotoxicity, genotoxicity and mutagenicity results indicate that these bone substitutes presented interesting preliminary results as potential biomaterials for bone repair.


Asunto(s)
Durapatita/efectos adversos , Pruebas de Toxicidad , Sustitutos de Huesos/análisis , Materiales Biocompatibles/análisis , Regeneración Ósea/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA