Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Magn Reson Chem ; 61(7): 418-426, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37080920

RESUMEN

Single-sided NMR instruments utilize inhomogeneous magnetic fields with strong gradients to nondestructively probe physical properties of materials. The sensitive region of this type of magnet is often a thin slice above the magnet's surface; measuring planar samples with high spatial resolution requires coplanarity between the sensitive region of the magnet and the sample region of interest. We developed an algorithmic approach to position flat samples coplanar with the magnet's sensitive region. The efficient and objective positioning process utilizes an adjustable stage that offers control over three degrees of freedom, and the optimal position for each sample is found with a quadtree algorithm. We show this algorithm is effective for positioning samples with various relaxation behaviors. We report resolution values that describe position optimization, acquisition constraints, and final spatial resolution for each sample. Measurements after optimized positioning had appropriate spatial resolution to distinguish physical regions of layered samples with different physical properties, namely, relaxation behavior. Our algorithmic positioning process can be implemented for planar samples in research and industrial settings to enhance spatial resolution of single-sided NMR measurements.

2.
Magn Reson Chem ; 58(9): 880-888, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442329

RESUMEN

Acrylic emulsion paint is among the most common media employed by 20th century artists. Since early acrylic paintings have begun to require the attention of conservators, scientists are working to characterize the properties of these paints to facilitate conservation efforts. In this study, we report an investigation of the physical and chemical properties of acrylic emulsion paints using single-sided NMR in conjunction with gloss measurements and scanning electron microscopy-energy dispersive spectrometry. Combining the data from these techniques gives insight into pigment-base interactions and the acrylic curing process, showing that as pigment concentration is increased in paints, the amount of acrylic base adsorbed to pigment particles increases, resulting in films with differing relaxation times. This research both emphasizes and contextualizes the utility of NMR relaxometry in studying cultural heritage objects and prompts further study into the effects of pigment concentration on the curing and conservation of paint films.

3.
Angew Chem Int Ed Engl ; 58(34): 11652-11656, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31226237

RESUMEN

Oil paints comprise pigments, drying oils, and additives that together confer desirable properties, but can react to form metal carboxylates (soaps) that may damage artworks over time. To obtain information on soap formation and aggregation, we introduce a new tapping-mode measurement paradigm for the photothermal induced resonance (PTIR) technique that enables nanoscale IR spectroscopy and imaging on highly heterogenous and rough paint thin sections. PTIR is used in combination with µ-computed tomography and IR microscopy to determine the distribution of metal carboxylates in a 23-year old oil paint of known formulation. Results show that heterogeneous agglomerates of Al-stearate and a Zn-carboxylate complex with Zn-stearate nano-aggregates in proximity are distributed randomly in the paint. The gradients of zinc carboxylates are unrelated to the Al-stearate distribution. These measurements open a new chemically sensitive nanoscale observation window on the distribution of metal soaps that can bring insights for understanding soap formation in oil paint.

4.
Angew Chem Int Ed Engl ; 55(16): 5040-3, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26960011

RESUMEN

Laplace NMR (LNMR) consists of relaxation and diffusion measurements providing detailed information about molecular motion and interaction. Here we demonstrate that ultrafast single- and multidimensional LNMR experiments, based on spatial encoding, are viable with low-field, single-sided magnets with an inhomogeneous magnetic field. This approach shortens the experiment time by one to two orders of magnitude relative to traditional experiments, and increases the sensitivity per unit time by a factor of three. The reduction of time required to collect multidimensional data opens significant prospects for mobile chemical analysis using NMR. Particularly tantalizing is future use of hyperpolarization to increase sensitivity by orders of magnitude, allowed by single-scan approach.

5.
Magn Reson Chem ; 53(1): 58-63, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25332115

RESUMEN

Typical experiments conducted with single-sided NMR are incapable of unique chemical identification and, thus, often rely on comparative measurements in scientific study. However, cultural heritage objects have unique natures and histories, making a genuine 'control' sample a rarity and complicating many scientific investigations. In this paper, we present some comparative results enabled by such a rare, control sample. Two paintings, The Dinner and The Dance from the 1616 set Pipenpoyse Wedding, were made by the same artist with indistinguishable materials and techniques. However, despite their shared history, The Dinner has undergone varnishing and subsequent varnish removal multiple times, whereas The Dance has not. NMR measurements on these two paintings show the effect of organic-solvent-based treatments on the stiffness of the paintings as measured by T(2,eff), supporting visual and tactile observations that The Dinner is stiffer throughout its thickness than The Dance, probably due to ingress of natural resins and organic solvents into the paint and ground layers. In addition to a comparative analysis of these two paintings, initial experiments to compare solvent penetration with different varnish removal methods are described. Model canvas painting samples were treated with solvent in two ways--with free solvent on a swab and with cellulose gel thickened solvent in a tissue. Both treatment methods cause a measurable change in T(2,eff) ; however, the thickened-solvent method affects a narrower region of the model than does the free solvent.

6.
J Am Chem Soc ; 136(1): 164-8, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24313335

RESUMEN

Nuclear magnetic resonance (NMR) can reveal the chemical constituents of a complex mixture without resorting to chemical modification, separation, or other perturbation. Recently, we and others have developed magnetic resonance agents that report on the presence of dilute analytes by proportionately altering the response of a more abundant or easily detected species, a form of amplification. One example of such a sensing medium is xenon gas, which is chemically inert and can be optically hyperpolarized, a process that enhances its NMR signal by up to 5 orders of magnitude. Here, we use a combinatorial synthetic approach to produce xenon magnetic resonance sensors that respond to small molecule analytes. The sensor responds to the ligand by producing a small chemical shift change in the Xe NMR spectrum. We demonstrate this technique for the dye, Rhodamine 6G, for which we have an independent optical assay to verify binding. We thus demonstrate that specific binding of a small molecule can produce a xenon chemical shift change, suggesting a general approach to the production of xenon sensors targeted to small molecule analytes for in vitro assays or molecular imaging in vivo.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas de Química Analítica/instrumentación , Péptidos/química , Xenón/química , Colorimetría , Biblioteca de Genes , Límite de Detección , Imagen por Resonancia Magnética , Péptidos/genética , Coloración y Etiquetado , Especificidad por Sustrato
7.
J Am Chem Soc ; 132(17): 5936-7, 2010 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-20392049

RESUMEN

In MRI, anatomical structures are most often differentiated by variations in their bulk magnetic properties. Alternatively, exogenous contrast agents can be attached to chemical moieties that confer affinity to molecular targets; the distribution of such contrast agents can be imaged by magnetic resonance. Xenon-based molecular sensors are molecular imaging agents that rely on the reversible exchange of hyperpolarized xenon between the bulk and a specifically targeted host-guest complex. We have incorporated approximately 125 xenon sensor molecules in the interior of an MS2 viral capsid, conferring multivalency and other properties of the viral capsid to the sensor molecule. The resulting signal amplification facilitates the detection of sensor at 0.7 pM, the lowest to date for any molecular imaging agent used in magnetic resonance. This amplification promises the detection of chemical targets at much lower concentrations than would be possible without the capsid scaffold.


Asunto(s)
Cápside/química , Medios de Contraste/química , Levivirus/química , Imagen por Resonancia Magnética , Isótopos de Xenón/química
8.
Chem Sci ; 9(28): 6143-6149, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30090302

RESUMEN

Laplace NMR (LNMR) offers deep insights on diffusional and rotational motion of molecules. The so-called "ultrafast" approach, based on spatial data encoding, enables one to carry out a multidimensional LNMR experiment in a single scan, providing from 10 to 1000-fold acceleration of the experiment. Here, we demonstrate the feasibility of ultrafast diffusion-T2 relaxation correlation (D-T2) measurements with a mobile, low-field, relatively low-cost, single-sided NMR magnet. We show that the method can probe a broad range of diffusion coefficients (at least from 10-8 to 10-12 m2 s-1) and reveal multiple components of fluids in heterogeneous materials. The single-scan approach is demonstrably compatible with nuclear spin hyperpolarization techniques because the time-consuming hyperpolarization process does not need to be repeated. Using dynamic nuclear polarization (DNP), we improved the NMR sensitivity of water molecules by a factor of 105 relative to non-hyperpolarized NMR in the 0.3 T field of the single-sided magnet. This enabled us to acquire a D-T2 map in a single, 22 ms scan, despite the low field and relatively low mole fraction (0.003) of hyperpolarized water. Consequently, low-field, hyperpolarized ultrafast LNMR offers significant prospects for advanced, mobile, low-cost and high-sensitivity chemical and medical analysis.

10.
J Magn Reson ; 213(1): 14-21, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21974996

RESUMEN

Molecular imaging based on saturation transfer in exchanging systems is a tool for amplified and chemically specific magnetic resonance imaging. Xenon-based molecular sensors are a promising category of molecular imaging agents in which chemical exchange of dissolved xenon between its bulk and agent-bound phases has been use to achieve sub-picomolar detection sensitivity. Control over the saturation transfer dynamics, particularly when multiple exchanging resonances are present in the spectra, requires saturation fields of limited bandwidth and is generally accomplished by continuous wave irradiation. We demonstrate instead how band-selective saturation sequences based on multiple pulse inversion elements can yield saturation bandwidth tuneable over a wide range, while depositing less RF power in the sample. We show how these sequences can be used in imaging experiments that require spatial-spectral and multispectral saturation. The results should be applicable to all CEST experiments and, in particular, will provide the spectroscopic control required for applications of arrays of xenon chemical sensors in microfluidic chemical analysis devices.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Xenón/química , Absorción , Algoritmos , Nanopartículas/química , Distribución Normal , Fantasmas de Imagen , Compuestos Policíclicos/química , Agua/química , Isótopos de Xenón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA