Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176158

RESUMEN

Epilepsy is a challenging brain disorder that is often difficult to treat with conventional therapies. The gut microbiota has been shown to play an important role in the development of neuropsychiatric disorders, including epilepsy. In this study, the effects of Bifidobacterium longum, a probiotic, on inflammation, neuronal degeneration, and behavior are evaluated in a lithium-pilocarpine model of temporal lobe epilepsy (TLE) induced in young adult rats. B. longum was administered orally at a dose of 109 CFU/rat for 30 days after pilocarpine injection. The results show that B. longum treatment has beneficial effects on the TLE-induced changes in anxiety levels, neuronal death in the amygdala, and body weight recovery. In addition, B. longum increased the expression of anti-inflammatory and neuroprotective genes, such as Il1rn and Pparg. However, the probiotic had little effect on TLE-induced astrogliosis and microgliosis and did not reduce neuronal death in the hippocampus and temporal cortex. The study suggests that B. longum may have a beneficial effect on TLE and may provide valuable insights into the role of gut bacteria in epileptogenesis. In addition, the results show that B. longum may be a promising drug for the comprehensive treatment of epilepsy.


Asunto(s)
Bifidobacterium longum , Epilepsia del Lóbulo Temporal , Epilepsia , Probióticos , Ratas , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Pilocarpina/efectos adversos , Litio/farmacología , Hipocampo/metabolismo , Epilepsia/metabolismo , Probióticos/farmacología , Modelos Animales de Enfermedad
2.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35453366

RESUMEN

Arachidonic acid (ARA) is a major component of lipid bilayers as well as the key substrate for the eicosanoid cascades. ARA is readily oxidized, and its non-enzymatic and enzymatic oxidation products induce inflammatory responses in nearly all tissues, including lung tissues. Deuteration at bis-allylic positions substantially decreases the overall rate of ARA oxidation when hydrogen abstraction is an initiating event. To compare the effects of dosing of arachidonic acid (H-ARA) and its bis-allylic hexadeuterated form (D-ARA) on lungs in conventionally healthy mice and in an acute lung injury model, mice were dosed with H-ARA or D-ARA for six weeks through dietary supplementation and then challenged with intranasal lipopolysaccharide (LPS) for subsequent analysis of bronchoalveolar lavage fluid and lung tissue. Dosing on D-ARA resulted in successful incorporation of D-ARA into various tissues. D-ARA significantly reduced LPS-induced adverse effects on alveolar septal thickness and the bronchoalveolar area. Oral deuterated ARA is taken up efficiently and protects against adverse LPS-induced pathology. This suggests novel therapeutic avenues for reducing lung damage during severe infections and other pathological conditions with inflammation in the pulmonary system and other inflammatory diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA