Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Glob Chang Biol ; 29(6): 1574-1590, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36448874

RESUMEN

Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long-term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long-term warming, we sampled soils from 13- and 28-year-old soil warming experiments in different seasons. We performed short-term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally-induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C-cycling processes to decadal warming. Our findings reveal that long-term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long-term warming effects on these soils.


Asunto(s)
Aclimatación , Microbiología del Suelo , Temperatura , Suelo/química , Carbono/metabolismo
2.
Glob Chang Biol ; 25(3): 900-910, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30417564

RESUMEN

Global soil carbon (C) stocks are expected to decline with warming, and changes in microbial processes are key to this projection. However, warming responses of critical microbial parameters such as carbon use efficiency (CUE) and biomass turnover (rB) are not well understood. Here, we determine these parameters using a probabilistic inversion approach that integrates a microbial-enzyme model with 22 years of carbon cycling measurements at Harvard Forest. We find that increasing temperature reduces CUE but increases rB, and that two decades of soil warming increases the temperature sensitivities of CUE and rB. These temperature sensitivities, which are derived from decades-long field observations, contrast with values obtained from short-term laboratory experiments. We also show that long-term soil C flux and pool changes in response to warming are more dependent on the temperature sensitivity of CUE than that of rB. Using the inversion-derived parameters, we project that chronic soil warming at Harvard Forest over six decades will result in soil C gain of <1.0% on average (1st and 3rd quartiles: 3.0% loss and 10.5% gain) in the surface mineral horizon. Our results demonstrate that estimates of temperature sensitivity of microbial CUE and rB can be obtained and evaluated rigorously by integrating multidecadal datasets. This approach can potentially be applied in broader spatiotemporal scales to improve long-term projections of soil C feedbacks to climate warming.


Asunto(s)
Biomasa , Carbono/metabolismo , Calentamiento Global , Microbiología del Suelo , Suelo/química , Ciclo del Carbono , Bosques , Modelos Teóricos , Temperatura
3.
Proc Natl Acad Sci U S A ; 113(48): 13797-13802, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849609

RESUMEN

The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

4.
Appl Environ Microbiol ; 82(22): 6518-6530, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27590813

RESUMEN

As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE: The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.


Asunto(s)
Bacterias/metabolismo , Metabolismo de los Hidratos de Carbono , Cambio Climático , Bosques , Calentamiento Global , Microbiología del Suelo , Actinobacteria/genética , Actinobacteria/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Carbono/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Celulosa/metabolismo , Ecosistema , Eucariontes/genética , Eucariontes/metabolismo , Metagenómica/métodos , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , Factores de Tiempo , Xilanos/metabolismo
5.
Glob Chang Biol ; 22(9): 3112-26, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27251794

RESUMEN

Stresses from heat and drought are expected to increasingly suppress crop yields, but the degree to which current models can represent these effects is uncertain. Here we evaluate the algorithms that determine impacts of heat and drought stress on maize in 16 major maize models by incorporating these algorithms into a standard model, the Agricultural Production Systems sIMulator (APSIM), and running an ensemble of simulations. Although both daily mean temperature and daylight temperature are common choice of forcing heat stress algorithms, current parameterizations in most models favor the use of daylight temperature even though the algorithm was designed for daily mean temperature. Different drought algorithms (i.e., a function of soil water content, of soil water supply to demand ratio, and of actual to potential transpiration ratio) simulated considerably different patterns of water shortage over the growing season, but nonetheless predicted similar decreases in annual yield. Using the selected combination of algorithms, our simulations show that maize yield reduction was more sensitive to drought stress than to heat stress for the US Midwest since the 1980s, and this pattern will continue under future scenarios; the influence of excessive heat will become increasingly prominent by the late 21st century. Our review of algorithms in 16 crop models suggests that the impacts of heat and drought stress on plant yield can be best described by crop models that: (i) incorporate event-based descriptions of heat and drought stress, (ii) consider the effects of nighttime warming, and (iii) coordinate the interactions among multiple stresses. Our study identifies the proficiency with which different model formulations capture the impacts of heat and drought stress on maize biomass and yield production. The framework presented here can be applied to other modeled processes and used to improve yield predictions of other crops with a wide variety of crop models.


Asunto(s)
Algoritmos , Sequías , Zea mays , Productos Agrícolas , Calor
6.
Proc Natl Acad Sci U S A ; 108(23): 9508-12, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21606374

RESUMEN

Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system.


Asunto(s)
Carbono/metabolismo , Ecosistema , Nitrógeno/metabolismo , Suelo/análisis , Árboles/metabolismo , Atmósfera/análisis , Biomasa , Modelos Biológicos , Desarrollo de la Planta , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Suelo/química , Microbiología del Suelo , Temperatura , Árboles/crecimiento & desarrollo
7.
ISME Commun ; 4(1): ycae051, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38699060

RESUMEN

Soil carbon loss is likely to increase due to climate warming, but microbiomes and microenvironments may dampen this effect. In a 30-year warming experiment, physical protection within soil aggregates affected the thermal responses of soil microbiomes and carbon dynamics. In this study, we combined metagenomic analysis with physical characterization of soil aggregates to explore mechanisms by which microbial communities respond to climate warming across different soil microenvironments. Long-term warming decreased the relative abundances of genes involved in degrading labile compounds (e.g. cellulose), but increased those genes involved in degrading recalcitrant compounds (e.g. lignin) across aggregate sizes. These changes were observed in most phyla of bacteria, especially for Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community composition was considerably altered by warming, leading to declined diversity for bacteria and fungi but not for archaea. Microbial functional genes, diversity, and community composition differed between macroaggregates and microaggregates, indicating the essential role of physical protection in controlling microbial community dynamics. Our findings suggest that microbes have the capacity to employ various strategies to acclimate or adapt to climate change (e.g. warming, heat stress) by shifting functional gene abundances and community structures in varying microenvironments, as regulated by soil physical protection.

8.
Ecol Appl ; 23(8): 1817-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24555311

RESUMEN

Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.


Asunto(s)
Carbono/química , Simulación por Computador , Ecosistema , Modelos Teóricos , Ríos/química , Animales , Regiones Árticas , Cambio Climático , Monitoreo del Ambiente , Estaciones del Año , Factores de Tiempo
9.
Environ Sci Technol ; 47(23): 13230-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24195766

RESUMEN

Development of regional policies to reduce net emissions of carbon dioxide (CO2) would benefit from the quantification of the major components of the region's carbon balance--fossil fuel CO2 emissions and net fluxes between land ecosystems and the atmosphere. Through spatially detailed inventories of fossil fuel CO2 emissions and a terrestrial biogeochemistry model, we produce the first estimate of regional carbon balance for the Northeast United States between 2001 and 2005. Our analysis reveals that the region was a net carbon source of 259 Tg C/yr over this period. Carbon sequestration by land ecosystems across the region, mainly forests, compensated for about 6% of the region's fossil fuel emissions. Actions that reduce fossil fuel CO2 emissions are key to improving the region's carbon balance. Careful management of forested lands will be required to protect their role as a net carbon sink and a provider of important ecosystem services such as water purification, erosion control, wildlife habitat and diversity, and scenic landscapes.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Ecosistema , Combustibles Fósiles , Modelos Teóricos , Atmósfera , Carbono/análisis , Dióxido de Carbono/análisis , Productos Agrícolas , Bosques , Humanos , Reproducibilidad de los Resultados , Estados Unidos
10.
Proc Natl Acad Sci U S A ; 107(46): 19649-54, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20651250

RESUMEN

The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.


Asunto(s)
Agricultura/organización & administración , Conservación de los Recursos Naturales , Agricultura Forestal , Efecto Invernadero , Brasil , Huella de Carbono , Ecosistema , Agricultura Forestal/métodos , Agricultura Forestal/tendencias , Árboles/crecimiento & desarrollo
11.
Ecol Appl ; 21(3): 750-63, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21639042

RESUMEN

Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO2 to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO2. Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901-2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state's 925 225 km2, 221 092 km2 have been converted to pastures and 89 533 km2 have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil's fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region's carbon balance is the type of foundation analysis needed by the new United Nations Collaborative Programmme for Reducing Emissions from Deforestation and Forest Degradation (REDD).


Asunto(s)
Agricultura/historia , Contaminantes Atmosféricos , Carbono/química , Ecosistema , Clima Tropical , Brasil , Simulación por Computador , Monitoreo del Ambiente , Historia del Siglo XX , Historia del Siglo XXI , Modelos Biológicos , Plantas/metabolismo , Suelo , Factores de Tiempo
12.
Ambio ; 50(4): 759-763, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33534057

RESUMEN

Disruption of the global nitrogen cycle by humans results primarily from activities associated with food and energy production. Since the middle of the twentieth century, human activities have more than doubled inputs of nitrogen to the Earth's ecosystems. This new nitrogen is in chemically and biologically active forms (reactive N) and moves through the environment causing an array of health and environmental problems. Research published in Ambio for the past three decades has been documenting this major global-scale problem and has catalyzed the formation of a science-led initiative, the International Nitrogen Initiative (INI), which has informed policies to manage the global nitrogen cycle. Currently, gaps and opportunities in nitrogen pollution policies still exist and require new interdisciplinary science to help to place the nitrogen management challenge in the context of the other environmental grand challenges of our time including climate change and biodiversity loss because their solutions will be interconnected.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Aniversarios y Eventos Especiales , Eutrofización , Humanos , Ciclo del Nitrógeno
13.
Front Microbiol ; 12: 666558, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512564

RESUMEN

Terrestrial ecosystems are an important carbon store, and this carbon is vulnerable to microbial degradation with climate warming. After 30 years of experimental warming, carbon stocks in a temperate mixed deciduous forest were observed to be reduced by 30% in the heated plots relative to the controls. In addition, soil respiration was seasonal, as was the warming treatment effect. We therefore hypothesized that long-term warming will have higher expressions of genes related to carbohydrate and lipid metabolism due to increased utilization of recalcitrant carbon pools compared to controls. Because of the seasonal effect of soil respiration and the warming treatment, we further hypothesized that these patterns will be seasonal. We used RNA sequencing to show how the microbial community responds to long-term warming (~30 years) in Harvard Forest, MA. Total RNA was extracted from mineral and organic soil types from two treatment plots (+5°C heated and ambient control), at two time points (June and October) and sequenced using Illumina NextSeq technology. Treatment had a larger effect size on KEGG annotated transcripts than on CAZymes, while soil types more strongly affected CAZymes than KEGG annotated transcripts, though effect sizes overall were small. Although, warming showed a small effect on overall CAZymes expression, several carbohydrate-associated enzymes showed increased expression in heated soils (~68% of all differentially expressed transcripts). Further, exploratory analysis using an unconstrained method showed increased abundances of enzymes related to polysaccharide and lipid metabolism and decomposition in heated soils. Compared to long-term warming, we detected a relatively small effect of seasonal variation on community gene expression. Together, these results indicate that the higher carbohydrate degrading potential of bacteria in heated plots can possibly accelerate a self-reinforcing carbon cycle-temperature feedback in a warming climate.

14.
Nat Commun ; 11(1): 3684, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32703952

RESUMEN

Empirical evidence for the response of soil carbon cycling to the combined effects of warming, drought and diversity loss is scarce. Microbial carbon use efficiency (CUE) plays a central role in regulating the flow of carbon through soil, yet how biotic and abiotic factors interact to drive it remains unclear. Here, we combine distinct community inocula (a biotic factor) with different temperature and moisture conditions (abiotic factors) to manipulate microbial diversity and community structure within a model soil. While community composition and diversity are the strongest predictors of CUE, abiotic factors modulated the relationship between diversity and CUE, with CUE being positively correlated with bacterial diversity only under high moisture. Altogether these results indicate that the diversity × ecosystem-function relationship can be impaired under non-favorable conditions in soils, and that to understand changes in soil C cycling we need to account for the multiple facets of global changes.


Asunto(s)
Biomasa , Ciclo del Carbono , Microbiota/fisiología , Microbiología del Suelo , Suelo/química , Bacterias/metabolismo , Hongos/metabolismo
15.
Nat Commun ; 10(1): 3024, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289265

RESUMEN

Nitrogen (N) availability exerts strong control on carbon storage in the forests of Northern Eurasia. Here, using a process-based model, we explore how three factors that alter N availability-permafrost degradation, atmospheric N deposition, and the abandonment of agricultural land to forest regrowth (land-use legacy)-affect carbon storage in the region's forest vegetation over the 21st century within the context of two IPCC global-change scenarios (RCPs 4.5 and 8.5). For RCP4.5, enhanced N availability results in increased tree carbon storage of 27.8 Pg C, with land-use legacy being the most important factor. For RCP8.5, enhanced N availability results in increased carbon storage in trees of 13.4 Pg C, with permafrost degradation being the most important factor. Our analysis reveals complex spatial and temporal patterns of regional carbon storage. This study underscores the importance of considering carbon-nitrogen interactions when assessing regional and sub-regional impacts of global change policies.

16.
Front Plant Sci ; 10: 1097, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572416

RESUMEN

Biological cycling of silica plays an important role in terrestrial primary production. Soil warming stemming from climate change can alter the cycling of elements, such as carbon and nitrogen, in forested ecosystems. However, the effects of soil warming on the biogeochemical cycle of silica in forested ecosystems remain unexplored. Here we examine long-term forest silica cycling under ambient and warmed conditions over a 15-year period of experimental soil warming at Harvard Forest (Petersham, MA). Specifically, we measured silica concentrations in organic and mineral soils, and in the foliage and litter of two dominant species (Acer rubrum and Quercus rubra), in a large (30 × 30 m) heated plot and an adjacent control plot (30 × 30 m). In 2016, we also examined effects of heating on dissolved silica in the soil solution, and conducted a litter decomposition experiment using four tree species (Acer rubrum, Quercus rubra, Betula lenta, Tsuga canadensis) to examine effects of warming on the release of biogenic silica (BSi) from plants to soils. We find that tree foliage maintained constant silica concentrations in the control and warmed plots, which, coupled with productivity enhancements under warming, led to an increase in total plant silica uptake. We also find that warming drove an acceleration in the release of silica from decaying litter in three of the four species we examined, and a substantial increase in the silica dissolved in soil solution. However, we observe no changes in soil BSi stocks with warming. Together, our data indicate that warming increases the magnitude of silica uptake by vegetation and accelerates the internal cycling of silica in in temperate forests, with possible, and yet unresolved, effects on the delivery of silica from terrestrial to marine systems.

17.
Ecol Lett ; 11(12): 1316-27, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19046360

RESUMEN

In the short-term heterotrophic soil respiration is strongly and positively related to temperature. In the long-term, its response to temperature is uncertain. One reason for this is because in field experiments increases in respiration due to warming are relatively short-lived. The explanations proposed for this ephemeral response include depletion of fast-cycling, soil carbon pools and thermal adaptation of microbial respiration. Using a > 15 year soil warming experiment in a mid-latitude forest, we show that the apparent 'acclimation' of soil respiration at the ecosystem scale results from combined effects of reductions in soil carbon pools and microbial biomass, and thermal adaptation of microbial respiration. Mass-specific respiration rates were lower when seasonal temperatures were higher, suggesting that rate reductions under experimental warming likely occurred through temperature-induced changes in the microbial community. Our results imply that stimulatory effects of global temperature rise on soil respiration rates may be lower than currently predicted.


Asunto(s)
Adaptación Fisiológica/fisiología , Calor , Microbiología del Suelo , Biomasa , Análisis de Regresión , Estaciones del Año , Suelo/análisis
18.
J Integr Plant Biol ; 50(11): 1467-83, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19017133

RESUMEN

Adjustment of ecosystem root respiration to warmer climatic conditions can alter the autotrophic portion of soil respiration and influence the amount of carbon available for biomass production. We examined 44 published values of annual forest root respiration and found an increase in ecosystem root respiration with increasing mean annual temperature (MAT), but the rate of this cross-ecosystem increase (Q(10)= 1.6) is less than published values for short-term responses of root respiration to temperature within ecosystems (Q(10)= 2-3). When specific root respiration rates and root biomass values were examined, there was a clear trend for decreasing root metabolic capacity (respiration rate at a standard temperature) with increasing MAT. There also were tradeoffs between root metabolic capacity and root system biomass, such that there were no instances of high growing season respiration rates and high root biomass occurring together. We also examined specific root respiration rates at three soil warming experiments at Harvard Forest, USA, and found decreases in metabolic capacity for roots from the heated plots. This decline could be due to either physiological acclimation or to the effects of co-occurring drier soils on the measurement date. Regardless of the cause, these findings clearly suggest that modeling efforts that allow root respiration to increase exponentially with temperature, with Q(10) values of 2 or more, may over-predict root contributions to ecosystem CO2 efflux for future climates and underestimate the amount of C available for other uses, including net primary productivity.


Asunto(s)
Respiración de la Célula/fisiología , Ecosistema , Temperatura , Árboles/metabolismo , Dióxido de Carbono/toxicidad , Respiración de la Célula/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Árboles/efectos de los fármacos
19.
PeerJ ; 6: e4843, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868267

RESUMEN

A seven-year long, two-factorial experiment using elevated temperatures (5 °C) and CO2 (concentration doubled compared to ambient conditions) designed to test the effects of global climate change on plant community composition was set up in a Subarctic ecosystem in northernmost Sweden. Using point-frequency analyses in permanent plots, an increased abundance of the deciduous Vaccinium myrtillus, the evergreens V. vitis-idaea and Empetrum nigrum ssp. hermaphroditum and the grass Avenella flexuosa was found in plots with elevated temperatures. We also observed a possibly transient community shift in the warmed plots, from the vegetation being dominated by the deciduous V. myrtillus to the evergreen V. vitis-idaea. This happened as a combined effect of V. myrtillus being heavily grazed during two events of herbivore attack-one vole outbreak (Clethrionomys rufocanus) followed by a more severe moth (Epirrita autumnata) outbreak that lasted for two growing seasons-producing a window of opportunity for V. vitis-idaea to utilize the extra light available as the abundance of V. myrtillus decreased, while at the same time benefitting from the increased growth in the warmed plots. Even though the effect of the herbivore attacks did not differ between treatments they may have obscured any additional treatment effects. This long-term study highlights that also the effects of stochastic herbivory events need to be accounted for when predicting future plant community changes.

20.
Ambio ; 45(2): 133-45, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26474765

RESUMEN

Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100.


Asunto(s)
Secuestro de Carbono , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA