Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Br J Haematol ; 176(3): 464-474, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28079251

RESUMEN

Human monopoiesis is a tightly coordinated process which starts in the bone marrow (BM) haematopoietic stem cell (HSC) compartment and leads to the production of circulating blood mature monocytes. Although mature monocytes/macrophages have been extensively studied in both normal or inflammatory conditions, monopoiesis has only been assessed in vitro and in vivo animal models, due to low frequency of the monocytic precursors in the normal human BM. Here we investigated the transcriptional profile along normal human BM monopoiesis. Five distinct maturation-associated stages of monocytic precursors were identified and isolated from (fresh) normal human BM through fluorescence-activated cell sorting, and the gene expression profile (GEP) of each monocytic precursor subset was analysed by DNA-oligonucleotide microarrays. Overall, >6000 genes (18% of the genes investigated) were expressed in ≥1 stage of BM monopoiesis at stable or variable amounts, showing early decrease in cell proliferation with increased levels of expression of genes linked with cell differentiation. The here-defined GEP of normal human BM monopoiesis might contribute to better understand monocytic differentiation and the identification of novel monocytic candidate markers, while also providing a frame of reference for the study of monocytic maturation in both neoplastic and non-neoplastic disease conditions involving monocytic precursor cells.


Asunto(s)
Células de la Médula Ósea/citología , Perfilación de la Expresión Génica , Adolescente , Adulto , Diferenciación Celular/genética , Proliferación Celular/genética , Niño , Femenino , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Humanos , Masculino , Persona de Mediana Edad , Monocitos/citología , Adulto Joven
2.
Cancers (Basel) ; 14(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35804860

RESUMEN

For the last two decades, measurable residual disease (MRD) has become one of the most powerful independent prognostic factors in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, the effect of therapy on the bone marrow (BM) microenvironment and its potential relationship with the MRD status and disease free survival (DFS) still remain to be investigated. Here we analyzed the distribution of mesenchymal stem cells (MSC) and endothelial cells (EC) in the BM of treated BCP-ALL patients, and its relationship with the BM MRD status and patient outcome. For this purpose, the BM MRD status and EC/MSC regeneration profile were analyzed by multiparameter flow cytometry (MFC) in 16 control BM (10 children; 6 adults) and 1204 BM samples from 347 children and 100 adult BCP-ALL patients studied at diagnosis (129 children; 100 adults) and follow-up (824 childhood samples; 151 adult samples). Patients were grouped into a discovery cohort (116 pediatric BCP-ALL patients; 338 samples) and two validation cohorts (74 pediatric BCP-ALL, 211 samples; and 74 adult BCP-ALL patients; 134 samples). Stromal cells (i.e., EC and MSC) were detected at relatively low frequencies in all control BM (16/16; 100%) and in most BCP-ALL follow-up samples (874/975; 90%), while they were undetected in BCP-ALL BM at diagnosis. In control BM samples, the overall percentage of EC plus MSC was higher in children than adults (p = 0.011), but with a similar EC/MSC ratio in both groups. According to the MRD status similar frequencies of both types of BM stromal cells were detected in BCP-ALL BM studied at different time points during the follow-up. Univariate analysis (including all relevant prognostic factors together with the percentage of stromal cells) performed in the discovery cohort was used to select covariates for a multivariate Cox regression model for predicting patient DFS. Of note, an increased percentage of EC (>32%) within the BCP-ALL BM stromal cell compartment at day +78 of therapy emerged as an independent unfavorable prognostic factor for DFS in childhood BCP-ALL in the discovery cohort­hazard ratio (95% confidence interval) of 2.50 (1−9.66); p = 0.05­together with the BM MRD status (p = 0.031). Further investigation of the predictive value of the combination of these two variables (%EC within stromal cells and MRD status at day +78) allowed classification of BCP-ALL into three risk groups with median DFS of: 3.9, 3.1 and 1.1 years, respectively (p = 0.001). These results were confirmed in two validation cohorts of childhood BCP-ALL (n = 74) (p = 0.001) and adult BCP-ALL (n = 40) (p = 0.004) treated at different centers. In summary, our findings suggest that an imbalanced EC/MSC ratio in BM at day +78 of therapy is associated with a shorter DFS of BCP-ALL patients, independently of their MRD status. Further prospective studies are needed to better understand the pathogenic mechanisms involved.

3.
Genes (Basel) ; 12(10)2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34680870

RESUMEN

Chronic Granulomatous Disease (CGD) is an inborn error of immunity characterized by impaired phagocyte function, recurrent fungal and bacterial infections and granuloma formation in multiple organs. Pediatric myelodysplastic Syndrome (MDS) is a rare hematological stem cell disease that leads to an ineffective hematopoiesis with variable risk of evolution to acute leukemias. Both disorders are rare and have distinct pathophysiologic mechanisms, with no known association. A 7-month-old boy presenting with recurrent infections and anemia at age 2 months underwent immunological, hematological and genetic investigation that culminated in the diagnosis of both CGD and MDS. Next generation sequencing was performed and identified a silent variant predicted as of Uncertain Significance, located in the splicing site at the end of exon 5 in CYBB. CYBB variants account for at least two thirds of CGD cases, but no previous descriptions of this variant were found in ClinVar or The Human Gene Mutation Database (HGMD) databases. We were able to demonstrate an exon 5 skipping on the proband's cDNA, which strongly suggests the disruption of the NADPH oxidase complex, abrogating the formation of reactive oxygen species from neutrophils. Moreover, erythroid cell lineage could be also affected by NADPH oxidase complex damages. Further investigation is needed to evaluate the potential effect of CYBB gene alterations in hematopoiesis, as well as in MDS and CGD association.


Asunto(s)
Enfermedad Granulomatosa Crónica/genética , Hematopoyesis/genética , Síndromes Mielodisplásicos/genética , NADPH Oxidasa 2/genética , Exones/genética , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/patología , Humanos , Lactante , Masculino , Mutación/genética , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/patología , NADPH Oxidasas/genética , Neutrófilos/metabolismo , Neutrófilos/patología , Pediatría , Fagocitos/metabolismo , Empalme del ARN/genética , Especies Reactivas de Oxígeno/metabolismo
4.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638431

RESUMEN

Early diagnosis of pediatric cancer is key for adequate patient management and improved outcome. Although multiparameter flow cytometry (MFC) has proven of great utility in the diagnosis and classification of hematologic malignancies, its application to non-hematopoietic pediatric tumors remains limited. Here we designed and prospectively validated a new single eight-color antibody combination-solid tumor orientation tube, STOT-for diagnostic screening of pediatric cancer by MFC. A total of 476 samples (139 tumor mass, 138 bone marrow, 86 lymph node, 58 peripheral blood, and 55 other body fluid samples) from 296 patients with diagnostic suspicion of pediatric cancer were analyzed by MFC vs. conventional diagnostic procedures. STOT was designed after several design-test-evaluate-redesign cycles based on a large panel of monoclonal antibody combinations tested on 301 samples. In its final version, STOT consists of a single 8-color/12-marker antibody combination (CD99-CD8/numyogenin/CD4-EpCAM/CD56/GD2/smCD3-CD19/cyCD3-CD271/CD45). Prospective validation of STOT in 149 samples showed concordant results with the patient WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). These included: 63/63 (100%) reactive/disease-free samples, 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors together with 28/38 (74%) leukemia/lymphoma cases; the only exception was Hodgkin lymphoma that required additional markers to be stained. In addition, STOT allowed accurate discrimination among the four most common subtypes of malignant CD45- CD56++ non-hematopoietic solid tumors: 13/13 (GD2++ numyogenin- CD271-/+ nuMyoD1- CD99- EpCAM-) neuroblastoma samples, 5/5 (GD2- numyogenin++ CD271++ nuMyoD1++ CD99-/+ EpCAM-) rhabdomyosarcomas, 2/2 (GD2-/+ numyogenin- CD271+ nuMyoD1- CD99+ EpCAM-) Ewing sarcoma family of tumors, and 7/7 (GD2- numyogenin- CD271+ nuMyoD1- CD99- EpCAM+) Wilms tumors. In summary, here we designed and validated a new standardized antibody combination and MFC assay for diagnostic screening of pediatric solid tumors that might contribute to fast and accurate diagnostic orientation and classification of pediatric cancer in routine clinical practice.

5.
Cell Death Discov ; 5: 69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854228

RESUMEN

Erythropoiesis has been extensively studied using in vitro and in vivo animal models. Despite this, there is still limited data about the gene expression profiles (GEP) of primary (ex vivo) normal human bone marrow (BM) erythroid maturation. We investigated the GEP of nucleated red blood cell (NRBC) precursors during normal human BM erythropoiesis. Three maturation-associated populations of NRBC were identified and purified from (fresh) normal human BM by flow cytometry and the GEP of each purified cell population directly analyzed using DNA-oligonucleotide microarrays. Overall, 6569 genes (19% of the genes investigated) were expressed in ≥1 stage of BM erythropoiesis at stable (e.g., genes involved in DNA process, cell signaling, protein organization and hemoglobin production) or variable amounts (e.g., genes related to cell differentiation, apoptosis, metabolism), the latter showing a tendency to either decrease from stage 1 to 3 (genes associated with regulation of erythroid differentiation and survival, e.g., SPI1, STAT5A) or increase from stage 2 to stage 3 (genes associated with autophagy, erythroid functions such as heme production, e.g., ALAS1, ALAS2), iron metabolism (e.g., ISCA1, SLC11A2), protection from oxidative stress (e.g., UCP2, PARK7), and NRBC enucleation (e.g., ID2, RB1). Interestingly, genes involved in apoptosis (e.g., CASP8, P2RX1) and immune response (e.g., FOXO3, TRAF6) were also upregulated in the last stage (stage 3) of maturation of NRBC precursors. Our results confirm and extend on previous observations and providing a frame of reference for better understanding the critical steps of human erythroid maturation and its potential alteration in patients with different clonal and non-clonal erythropoietic disorders.

7.
Hematology ; 22(7): 444-449, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28220719

RESUMEN

OBJECTIVES: Cholecystitis is one of the complications of symptomatic cholelithiasis responsible for high levels of morbidity of sickle cell disease (SCD) patients. Here, we investigated the possible protective role of single gene deletions of α-thalassaemia in the occurrence of cholelithiasis and cholecystitis in SCD patients, as well as the cholecystectomy requirements. METHODS: The α-globin genotype was determined in 83 SCD patients using the multiplex-polymerase chain reaction and compared with clinical events. RESULTS: Overall, in 23% of patients, -α3.7 deletion was found. α-Thalassaemia concomitant to SCD was an independent protective factor to cholecystitis (OR = 0.07; 95% CI: 0.01-0.66; p = 0.020) and cholecystectomy requirement (OR = 0.14; 95% CI: 0.03-0.60; p = 0.008). The risk of cholelithiasis was not affected by the α-thalassaemia concomitance. CONCLUSIONS: To the best our knowledge, our study is the first to show the protective effect of α-thalassaemia on cholecystitis and cholecystectomy requirements in SCD, which may be due to an improved splenic function.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Colecistectomía , Colecistitis/etiología , Talasemia alfa/complicaciones , Adolescente , Adulto , Anciano , Niño , Preescolar , Índices de Eritrocitos , Femenino , Eliminación de Gen , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Morbilidad , Oportunidad Relativa , Fenotipo , Medición de Riesgo , Adulto Joven , Globinas alfa/genética , Talasemia alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA