Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Emerg Infect Dis ; 29(2): 242-251, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596565

RESUMEN

Genomic data provides useful information for public health practice, particularly when combined with epidemiologic data. However, sampling bias is a concern because inferences from nonrandom data can be misleading. In March 2021, the Washington State Department of Health, USA, partnered with submitting and sequencing laboratories to establish sentinel surveillance for SARS-CoV-2 genomic data. We analyzed available genomic and epidemiologic data during presentinel and sentinel periods to assess representativeness and timeliness of availability. Genomic data during the presentinel period was largely unrepresentative of all COVID-19 cases. Data available during the sentinel period improved representativeness for age, death from COVID-19, outbreak association, long-term care facility-affiliated status, and geographic coverage; timeliness of data availability and captured viral diversity also improved. Hospitalized cases were underrepresented, indicating a need to increase inpatient sampling. Our analysis emphasizes the need to understand and quantify sampling bias in phylogenetic studies and continue evaluation and improvement of public health surveillance systems.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Washingtón/epidemiología , Vigilancia de Guardia , Filogenia , Genómica
2.
Clin Infect Dis ; 75(1): e536-e544, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35412591

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with 7 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. METHODS: Our study includes individuals with positive SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) in the Washington Disease Reporting System with available viral genome data, from 1 December 2020 to 14 January 2022. The analysis was restricted to cases with specimens collected through sentinel surveillance. Using a Cox proportional hazards model with mixed effects, we estimated hazard ratios (HR) for hospitalization risk following infection with a variant, adjusting for age, sex, calendar week, and vaccination. RESULTS: In total, 58 848 cases were sequenced through sentinel surveillance, of which 1705 (2.9%) were hospitalized due to COVID-19. Higher hospitalization risk was found for infections with Gamma (HR 3.20, 95% confidence interval [CI] 2.40-4.26), Beta (HR 2.85, 95% CI 1.56-5.23), Delta (HR 2.28 95% CI 1.56-3.34), or Alpha (HR 1.64, 95% CI 1.29-2.07) compared to infections with ancestral lineages; Omicron (HR 0.92, 95% CI .56-1.52) showed no significant difference in risk. Following Alpha, Gamma, or Delta infection, unvaccinated patients show higher hospitalization risk, while vaccinated patients show no significant difference in risk, both compared to unvaccinated, ancestral lineage cases. Hospitalization risk following Omicron infection is lower with vaccination. CONCLUSIONS: Infection with Alpha, Gamma, or Delta results in a higher hospitalization risk, with vaccination attenuating that risk. Our findings support hospital preparedness, vaccination, and genomic surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Hospitalización , Humanos , Estudios Retrospectivos , SARS-CoV-2/genética , Washingtón/epidemiología
3.
Mol Microbiol ; 115(2): 208-221, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32985735

RESUMEN

The Mycobacterium tuberculosis cell envelope is a critical interface between the host and pathogen and provides a protective barrier against the immune response and antibiotics. Cell envelope lipids are also mycobacterial virulence factors that influence the host immune response. The mycobacterial membrane protein large (MmpL) proteins transport cell envelope lipids and siderophores that are important for the basic physiology and pathogenesis of M. tuberculosis. We recently identified MmpL11 as a conserved transporter of mycolic acid-containing lipids including monomeromycolyl diacylglycerol (MMDAG), mycolate wax ester (MWE), and long-chain triacylglycerols (LC-TAGs). These lipids contribute to biofilm formation in M. tuberculosis and M. smegmatis, and non-replicating persistence in M. tuberculosis. In this report, we identified domains and residues that are essential for MmpL11TB lipid transporter activity. Specifically, we show that the D1 periplasmic loop and a conserved tyrosine are essential for the MmpL11 function. Intriguingly, we found that MmpL11 levels are regulated by the phosphorylation of threonine in the cytoplasmic C-terminal domain, providing the first direct evidence of the phospho-regulation of MmpL11 transporter activity in M. tuberculosis and M. smegmatis. Our results offer further insight into the function of MmpL transporters and regulation of mycobacterial cell envelope biogenesis.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Ácidos Micólicos/metabolismo , Periplasma/metabolismo , Fosforilación , Sideróforos/metabolismo , Tuberculosis/microbiología , Factores de Virulencia/metabolismo
4.
J Biol Chem ; 294(43): 15711-15723, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31471317

RESUMEN

The mycobacterial cell envelope is crucial to host-pathogen interactions as a barrier against antibiotics and the host immune response. In addition, cell envelope lipids are mycobacterial virulence factors. Cell envelope lipid biosynthesis is the target of a number of frontline tuberculosis treatments and has been the focus of much research. However, the transport mechanisms by which these lipids reach the mycomembrane remain poorly understood. Many envelope lipids are exported from the cytoplasm to the periplasmic space via the mycobacterial membrane protein large (MmpL) family of proteins. In other bacteria, lipoproteins can contribute to outer membrane biogenesis through direct binding of substrates and/or protein-protein associations with extracytoplasmic biosynthetic enzymes. In this report, we investigate whether the lipoprotein LpqN plays a similar role in mycobacteria. Using a genetic two-hybrid approach, we demonstrate that LpqN interacts with periplasmic loop domains of the MmpL3 and MmpL11 transporters that export mycolic acid-containing cell envelope lipids. We observe that LpqN also interacts with secreted cell envelope biosynthetic enzymes such as Ag85A via pulldown assays. The X-ray crystal structures of LpqN and LpqN bound to dodecyl-trehalose suggest that LpqN directly binds trehalose monomycolate, the MmpL3 and Ag85A substrate. Finally, we observe altered lipid profiles of the ΔlpqN mutant during biofilm maturation, pointing toward a possible physiological role for the protein. The results of this study suggest that LpqN may act as a membrane fusion protein, connecting MmpL transporters with periplasmic proteins, and provide general insight into the role of lipoproteins in Mycobacterium tuberculosis cell envelope biogenesis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Mycobacterium tuberculosis/metabolismo , Sitios de Unión , Biopelículas , Transporte Biológico , Vías Biosintéticas , Ligandos , Modelos Moleculares , Ácidos Micólicos/metabolismo , Unión Proteica
5.
medRxiv ; 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34729567

RESUMEN

BACKGROUND: The COVID-19 pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with seven SARS-CoV-2 variants. METHODS: Our study includes individuals with positive SARS-CoV-2 RT-PCR in the Washington Disease Reporting System with available viral genome data, from December 1, 2020 to January 14, 2022. The analysis was restricted to cases with specimens collected through sentinel surveillance. Using a Cox proportional hazards model with mixed effects, we estimated hazard ratios (HR) for hospitalization risk following infection with a variant, adjusting for age, sex, calendar week, and vaccination. FINDINGS: 58,848 cases were sequenced through sentinel surveillance, of which 1705 (2.9%) were hospitalized due to COVID-19. Higher hospitalization risk was found for infections with Gamma (HR 3.20, 95%CI 2.40-4.26), Beta (HR 2.85, 95%CI 1.56-5.23), Delta (HR 2.28 95%CI 1.56-3.34) or Alpha (HR 1.64, 95%CI 1.29-2.07) compared to infections with ancestral lineages; Omicron (HR 0.92, 95%CI 0.56-1.52) showed no significant difference in risk. Following Alpha, Gamma, or Delta infection, unvaccinated patients show higher hospitalization risk, while vaccinated patients show no significant difference in risk, both compared to unvaccinated, ancestral lineage cases. Hospitalization risk following Omicron infection is lower with vaccination. CONCLUSION: Infection with Alpha, Gamma, or Delta results in a higher hospitalization risk, with vaccination attenuating that risk. Our findings support hospital preparedness, vaccination, and genomic surveillance. SUMMARY: Hospitalization risk following infection with SARS-CoV-2 variant remains unclear. We find a higher hospitalization risk in cases infected with Alpha, Beta, Gamma, and Delta, but not Omicron, with vaccination lowering risk. Our findings support hospital preparedness, vaccination, and genomic surveillance.

6.
Antibiotics (Basel) ; 10(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34439030

RESUMEN

Staphylococcus aureus are human facultative pathogenic bacteria and can be found as contaminants in the environment. The aim of our study was to determine whether methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolated from coastal beach and river waters, anchialine pools, sand, and wastewater on the island of Hawai'i, Hawai'i, are a potential health risk. Samples were collected from three regions on Hawai'i Island from July to December 2020 during the COVID-19 pandemic and were characterized using whole-genome sequencing (WGS). From WGS data, multilocus sequence typing (MLST), SCCmec type, antimicrobial resistance genes, virulence factors, and plasmids were identified. Of the 361 samples, 98.1% were positive for Staphylococcus spp. and 7.2% were S. aureus positive (n = 26); nine MRSA and 27 MSSA strains were characterized; multiple isolates were chosen from the same sample in two sand and seven coastal beach water samples. The nine MRSA isolates were multi-drug resistant (6-9 genes) sequence type (ST) 8, clonal complex (CC) 8, SCCmec type IVa (USA300 clone), and were clonally related (0-16 SNP differences), and carried 16-19 virulence factors. The 27 MSSA isolates were grouped into eight CCs and 12 STs. Seventy-eight percent of the MSSA isolates carried 1-5 different antibiotic resistance genes and carried 5-19 virulence factors. We found S. aureus in coastal beach and river waters, anchialine pools, and sand at locations with limited human activity on the island of Hawai'i. This may be a public health hazard.

7.
Sci Transl Med ; 13(595)2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33941621

RESUMEN

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gravely affected societies around the world. Outbreaks in different parts of the globe have been shaped by repeated introductions of new viral lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State (USA) to characterize how the spread of SARS-CoV-2 in Washington State in early 2020 was shaped by differences in timing of mitigation strategies across counties and by repeated introductions of viral lineages into the state. In addition, we show that the increase in frequency of a potentially more transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and multiple introductions of 614G but not the other variant (614D) into the state. At an individual level, we observed evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we did not find any evidence that the 614G variant affects clinical severity or patient outcomes. Overall, this suggests that with regard to D614G, the behavior of individuals has been more important in shaping the course of the pandemic in Washington State than this variant of the virus.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , COVID-19/virología , Brotes de Enfermedades , Humanos , Filogenia , SARS-CoV-2/genética , Washingtón/epidemiología
8.
Science ; 370(6516): 571-575, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32913002

RESUMEN

After its emergence in Wuhan, China, in late November or early December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus rapidly spread globally. Genome sequencing of SARS-CoV-2 allows the reconstruction of its transmission history, although this is contingent on sampling. We analyzed 453 SARS-CoV-2 genomes collected between 20 February and 15 March 2020 from infected patients in Washington state in the United States. We find that most SARS-CoV-2 infections sampled during this time derive from a single introduction in late January or early February 2020, which subsequently spread locally before active community surveillance was implemented.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Genoma Viral , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Teorema de Bayes , COVID-19 , Humanos , Funciones de Verosimilitud , Pandemias , Filogenia , SARS-CoV-2 , Washingtón/epidemiología
9.
medRxiv ; 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33024981

RESUMEN

The rapid spread of SARS-CoV-2 has gravely impacted societies around the world. Outbreaks in different parts of the globe are shaped by repeated introductions of new lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State to characterize how the spread of SARS-CoV-2 in Washington State (USA) was shaped by differences in timing of mitigation strategies across counties, as well as by repeated introductions of viral lineages into the state. Additionally, we show that the increase in frequency of a potentially more transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and multiple introductions of 614G, but not the other variant (614D) into the state. At an individual level, we see evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we do not find any evidence that the 614G variant impacts clinical severity or patient outcomes. Overall, this suggests that at least to date, the behavior of individuals has been more important in shaping the course of the pandemic than changes in the virus.

10.
medRxiv ; 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32511596

RESUMEN

Following its emergence in Wuhan, China, in late November or early December 2019, the SARS-CoV-2 virus has rapidly spread throughout the world. On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic. Genome sequencing of SARS-CoV-2 strains allows for the reconstruction of transmission history connecting these infections. Here, we analyze 346 SARS-CoV-2 genomes from samples collected between 20 February and 15 March 2020 from infected patients in Washington State, USA. We found that the large majority of SARS-CoV-2 infections sampled during this time frame appeared to have derived from a single introduction event into the state in late January or early February 2020 and subsequent local spread, strongly suggesting cryptic spread of COVID-19 during the months of January and February 2020, before active community surveillance was implemented. We estimate a common ancestor of this outbreak clade as occurring between 18 January and 9 February 2020. From genomic data, we estimate an exponential doubling between 2.4 and 5.1 days. These results highlight the need for large-scale community surveillance for SARS-CoV-2 introductions and spread and the power of pathogen genomics to inform epidemiological understanding.

11.
Microorganisms ; 7(3)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841535

RESUMEN

Mycobacterium tuberculosis (Mtb) remains an important human pathogen. The Mtb cell envelope is a critical bacterial structure that contributes to virulence and pathogenicity. Mycobacterial membrane protein large (MmpL) proteins export bulky, hydrophobic substrates that are essential for the unique structure of the cell envelope and directly support the ability of Mtb to infect and persist in the host. This review summarizes recent investigations that have enabled insight into the molecular mechanisms underlying MmpL substrate export and the role that these substrates play during Mtb infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA