Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(52): 27105-27114, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31806756

RESUMEN

Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of l-arabinose linked to 2 d-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining d-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked d-glucose molecule to l-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked d-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.

2.
Plant Cell ; 30(12): 3038-3057, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30429223

RESUMEN

Glycosylation of small molecules is critical for numerous biological processes in plants, including hormone homeostasis, neutralization of xenobiotics, and synthesis and storage of specialized metabolites. Glycosylation of plant natural products is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits such as disease resistance and flavor and have numerous pharmaceutical applications. Most characterized plant natural product UGTs are glucosyltransferases, and little is known about enzymes that add other sugars. Here we report the discovery and characterization of AsAAT1 (UGT99D1), which is required for biosynthesis of the antifungal saponin avenacin A-1 in oat (Avena strigosa). This enzyme adds l-Ara to the triterpene scaffold at the C-3 position, a modification critical for disease resistance. The only previously reported plant natural product arabinosyltransferase is a flavonoid arabinosyltransferase from Arabidopsis (Arabidopsis thaliana). We show that AsAAT1 has high specificity for UDP-ß-l-arabinopyranose, identify two amino acids required for sugar donor specificity, and through targeted mutagenesis convert AsAAT1 into a glucosyltransferase. We further identify a second arabinosyltransferase potentially implicated in the biosynthesis of saponins that determine bitterness in soybean (Glycine max). Our investigations suggest independent evolution of UDP-Ara sugar donor specificity in arabinosyltransferases in monocots and eudicots.


Asunto(s)
Glicosiltransferasas/metabolismo , Pentosiltransferasa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Avena/genética , Avena/metabolismo , Glicosiltransferasas/genética , Pentosiltransferasa/genética , Saponinas/metabolismo , Triterpenos/metabolismo , Azúcares de Uridina Difosfato/genética , Azúcares de Uridina Difosfato/metabolismo
3.
New Phytol ; 221(3): 1544-1555, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30294977

RESUMEN

Oats produce avenacins, antifungal triterpenes that are synthesized in the roots and provide protection against take-all and other soilborne diseases. Avenacins are acylated at the carbon-21 position of the triterpene scaffold, a modification critical for antifungal activity. We have previously characterized several steps in the avenacin pathway, including those required for acylation. However, transfer of the acyl group to the scaffold requires the C-21ß position to be oxidized first, by an as yet uncharacterized enzyme. We mined oat transcriptome data to identify candidate cytochrome P450 enzymes that may catalyse C-21ß oxidation. Candidates were screened for activity by transient expression in Nicotiana benthamiana. We identified a cytochrome P450 enzyme AsCYP72A475 as a triterpene C-21ß hydroxylase, and showed that expression of this enzyme together with early pathway steps yields C-21ß oxidized avenacin intermediates. We further demonstrate that AsCYP72A475 is synonymous with Sad6, a previously uncharacterized locus required for avenacin biosynthesis. sad6 mutants are compromised in avenacin acylation and have enhanced disease susceptibility. The discovery of AsCYP72A475 represents an important advance in the understanding of triterpene biosynthesis and paves the way for engineering the avenacin pathway into wheat and other cereals for control of take-all and other diseases.


Asunto(s)
Avena/enzimología , Oxidorreductasas/metabolismo , Triterpenos/metabolismo , Acilación , Sistema Enzimático del Citocromo P-450/metabolismo , Estudios de Asociación Genética , Hidroxilación , Mutación/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Filogenia , Andamios del Tejido/química , Nicotiana/metabolismo , Transcriptoma/genética
4.
Proc Natl Acad Sci U S A ; 113(30): E4407-14, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27412861

RESUMEN

Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply.


Asunto(s)
Aminoácidos/genética , Transferasas Intramoleculares/genética , Proteínas de Plantas/genética , Triterpenos/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Avena/enzimología , Avena/genética , Avena/metabolismo , Secuencia Conservada/genética , Ciclización , Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Triterpenos/química
5.
Proc Natl Acad Sci U S A ; 111(23): 8679-84, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912185

RESUMEN

Sterols have important functions in membranes and signaling. Plant sterols are synthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene to cycloartenol. Plants also convert 2,3-oxidosqualene to other sterol-like cyclization products, including the simple triterpene ß-amyrin. The function of ß-amyrin per se is unknown, but this molecule can serve as an intermediate in the synthesis of more complex triterpene glycosides associated with plant defense. ß-Amyrin is present at low levels in the roots of diploid oat (Avena strigosa). Oat roots also synthesize the ß-amyrin-derived triterpene glycoside avenacin A-1, which provides protection against soil-borne diseases. The genes for the early steps in avenacin A-1 synthesis [saponin-deficient 1 and 2 (Sad1 and Sad2)] have been recruited from the sterol pathway by gene duplication and neofunctionalization. Here we show that Sad1 and Sad2 are regulated by an ancient root developmental process that is conserved across diverse species. Sad1 promoter activity is dependent on an L1 box motif, implicating sterol/lipid-binding class IV homeodomain leucine zipper transcription factors as potential regulators. The metabolism of ß-amyrin is blocked in sad2 mutants, which therefore accumulate abnormally high levels of this triterpene. The accumulation of elevated levels of ß-amyrin in these mutants triggers a "superhairy" root phenotype. Importantly, this effect is manifested very early in the establishment of the root epidermis, causing a greater proportion of epidermal cells to be specified as root hair cells rather than nonhair cells. Together these findings suggest that simple triterpenes may have widespread and as yet largely unrecognized functions in plant growth and development.


Asunto(s)
Avena/metabolismo , Ácido Oleanólico/análogos & derivados , Epidermis de la Planta/metabolismo , Raíces de Plantas/metabolismo , Triterpenos/metabolismo , Avena/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Ácido Oleanólico/metabolismo , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saponinas/metabolismo , Transcriptoma/genética
6.
Plant Cell ; 25(3): 1078-92, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23532069

RESUMEN

Operon-like gene clusters are an emerging phenomenon in the field of plant natural products. The genes encoding some of the best-characterized plant secondary metabolite biosynthetic pathways are scattered across plant genomes. However, an increasing number of gene clusters encoding the synthesis of diverse natural products have recently been reported in plant genomes. These clusters have arisen through the neo-functionalization and relocation of existing genes within the genome, and not by horizontal gene transfer from microbes. The reasons for clustering are not yet clear, although this form of gene organization is likely to facilitate co-inheritance and co-regulation. Oats (Avena spp) synthesize antimicrobial triterpenoids (avenacins) that provide protection against disease. The synthesis of these compounds is encoded by a gene cluster. Here we show that a module of three adjacent genes within the wider biosynthetic gene cluster is required for avenacin acylation. Through the characterization of these genes and their encoded proteins we present a model of the subcellular organization of triterpenoid biosynthesis.


Asunto(s)
Avena/genética , Genes de Plantas , Familia de Multigenes , Saponinas/metabolismo , Triterpenos/metabolismo , Acilación , Aciltransferasas/clasificación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Antifúngicos/metabolismo , Antifúngicos/farmacología , Ascomicetos/patogenicidad , Avena/enzimología , Avena/metabolismo , Regulación de la Expresión Génica de las Plantas , Metilación , Metiltransferasas/clasificación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Saponinas/genética , Relación Estructura-Actividad , Nicotiana/genética , Nicotiana/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(35): E3360-7, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940321

RESUMEN

Members of the cytochromes P450 superfamily (P450s) catalyze a huge variety of oxidation reactions in microbes and higher organisms. Most P450 families are highly divergent, but in contrast the cytochrome P450 14α-sterol demethylase (CYP51) family is one of the most ancient and conserved, catalyzing sterol 14α-demethylase reactions required for essential sterol synthesis across the fungal, animal, and plant kingdoms. Oats (Avena spp.) produce antimicrobial compounds, avenacins, that provide protection against disease. Avenacins are synthesized from the simple triterpene, ß-amyrin. Previously we identified a gene encoding a member of the CYP51 family of cytochromes P450, AsCyp51H10 (also known as Saponin-deficient 2, Sad2), that is required for avenacin synthesis in a forward screen for avenacin-deficient oat mutants. sad2 mutants accumulate ß-amyrin, suggesting that they are blocked early in the pathway. Here, using a transient plant expression system, we show that AsCYP51H10 is a multifunctional P450 capable of modifying both the C and D rings of the pentacyclic triterpene scaffold to give 12,13ß-epoxy-3ß,16ß-dihydroxy-oleanane (12,13ß-epoxy-16ß-hydroxy-ß-amyrin). Molecular modeling and docking experiments indicate that C16 hydroxylation is likely to precede C12,13 epoxidation. Our computational modeling, in combination with analysis of a suite of sad2 mutants, provides insights into the unusual catalytic behavior of AsCYP51H10 and its active site mutants. Fungal bioassays show that the C12,13 epoxy group is an important determinant of antifungal activity. Accordingly, the oat AsCYP51H10 enzyme has been recruited from primary metabolism and has acquired a different function compared to other characterized members of the plant CYP51 family--as a multifunctional stereo- and regio-specific hydroxylase in plant specialized metabolism.


Asunto(s)
Antiinfecciosos/metabolismo , Avena/metabolismo , Esterol 14-Desmetilasa/metabolismo , Triterpenos/metabolismo , Secuencia de Aminoácidos , Transferasas Intramoleculares/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Esterol 14-Desmetilasa/química , Esterol 14-Desmetilasa/genética , Nicotiana/enzimología
8.
Nat Commun ; 12(1): 2563, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963185

RESUMEN

Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a 'self-poisoning' scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.


Asunto(s)
Avena/genética , Resistencia a la Enfermedad/genética , Redes y Vías Metabólicas/genética , Telómero/genética , Avena/metabolismo , Grano Comestible/genética , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Familia de Multigenes , RNA-Seq , Secuencias Repetitivas de Ácidos Nucleicos , Saponinas/biosíntesis , Saponinas/química , Saponinas/genética , Sintenía/genética , Nicotiana/metabolismo , Secuenciación Completa del Genoma
9.
Nat Protoc ; 13(12): 2944-2963, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30446746

RESUMEN

'Speed breeding' (SB) shortens the breeding cycle and accelerates crop research through rapid generation advancement. SB can be carried out in numerous ways, one of which involves extending the duration of plants' daily exposure to light, combined with early seed harvest, to cycle quickly from seed to seed, thereby reducing the generation times for some long-day (LD) or day-neutral crops. In this protocol, we present glasshouse and growth chamber-based SB approaches with supporting data from experimentation with several crops. We describe the conditions that promote the rapid growth of bread wheat, durum wheat, barley, oat, various Brassica species, chickpea, pea, grass pea, quinoa and Brachypodium distachyon. Points of flexibility within the protocols are highlighted, including how plant density can be increased to efficiently scale up plant numbers for single-seed descent (SSD). In addition, instructions are provided on how to perform SB on a small scale in a benchtop growth cabinet, enabling optimization of parameters at a low cost.


Asunto(s)
Avena/crecimiento & desarrollo , Brachypodium/crecimiento & desarrollo , Brassica/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Hordeum/crecimiento & desarrollo , Fitomejoramiento/métodos , Triticum/crecimiento & desarrollo , Fitomejoramiento/economía , Factores de Tiempo
10.
Plant Cell ; 21(8): 2473-84, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19684243

RESUMEN

Serine carboxypeptidase-like (SCPL) proteins have recently emerged as a new group of plant acyltransferases. These enzymes share homology with peptidases but lack protease activity and instead are able to acylate natural products. Several SCPL acyltransferases have been characterized to date from dicots, including an enzyme required for the synthesis of glucose polyesters that may contribute to insect resistance in wild tomato (Solanum pennellii) and enzymes required for the synthesis of sinapate esters associated with UV protection in Arabidopsis thaliana. In our earlier genetic analysis, we identified the Saponin-deficient 7 (Sad7) locus as being required for the synthesis of antimicrobial triterpene glycosides (avenacins) and for broad-spectrum disease resistance in diploid oat (Avena strigosa). Here, we report on the cloning of Sad7 and show that this gene encodes a functional SCPL acyltransferase, SCPL1, that is able to catalyze the synthesis of both N-methyl anthraniloyl- and benzoyl-derivatized forms of avenacin. Sad7 forms part of an operon-like gene cluster for avenacin synthesis. Oat SCPL1 (SAD7) is the founder member of a subfamily of monocot-specific SCPL proteins that includes predicted proteins from rice (Oryza sativa) and other grasses with potential roles in secondary metabolism and plant defense.


Asunto(s)
Aciltransferasas/fisiología , Antiinfecciosos/metabolismo , Avena/enzimología , Avena/metabolismo , Carboxipeptidasas/fisiología , Inmunidad Innata/fisiología , Proteínas de Plantas/fisiología , Aciltransferasas/química , Aciltransferasas/clasificación , Aciltransferasas/genética , Secuencia de Aminoácidos , Avena/genética , Carboxipeptidasas/química , Carboxipeptidasas/clasificación , Carboxipeptidasas/genética , Inmunidad Innata/genética , Immunoblotting , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Multimerización de Proteína , Homología de Secuencia de Aminoácido
11.
Plant Cell ; 20(1): 201-12, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18203919

RESUMEN

Avenacins are antimicrobial triterpene glycosides that are produced by oat (Avena) roots. These compounds confer broad-spectrum resistance to soil pathogens. Avenacin A-1, the major avenacin produced by oats, is strongly UV fluorescent and accumulates in root epidermal cells. We previously defined nine loci required for avenacin synthesis, eight of which are clustered. Mutants affected at seven of these (including Saponin-deficient1 [Sad1], the gene for the first committed enzyme in the pathway) have normal root morphology but reduced root fluorescence. In this study, we focus on mutations at the other two loci, Sad3 (also within the gene cluster) and Sad4 (unlinked), which result in stunted root growth, membrane trafficking defects in the root epidermis, and root hair deficiency. While sad3 and sad4 mutants both accumulate the same intermediate, monodeglucosyl avenacin A-1, the effect on avenacin A-1 glucosylation in sad4 mutants is only partial. sad1/sad1 sad3/sad3 and sad1/sad1 sad4/sad4 double mutants have normal root morphology, implying that the accumulation of incompletely glucosylated avenacin A-1 disrupts membrane trafficking and causes degeneration of the epidermis, with consequential effects on root hair formation. Various lines of evidence indicate that these effects are dosage-dependent. The significance of these data for the evolution and maintenance of the avenacin gene cluster is discussed.


Asunto(s)
Avena/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Saponinas/biosíntesis , Alelos , Avena/citología , Avena/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Fluorescencia , Dosificación de Gen , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Raíces de Plantas/citología , Raíces de Plantas/ultraestructura , Saponinas/química , Saponinas/metabolismo , Esteroles/química , Esteroles/metabolismo
12.
Proc Natl Acad Sci U S A ; 103(49): 18848-53, 2006 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-17124172

RESUMEN

CYP51 sterol demethylases are the only cytochrome P450 enzymes with a conserved function across the animal, fungal, and plant kingdoms (in the synthesis of essential sterols). These highly conserved enzymes, which are important targets for cholesterol-lowering drugs, antifungal agents, and herbicides, are regarded as the most ancient member cytochrome P450 family. Here we present a report of a CYP51 enzyme that has acquired a different function. We show that the plant enzyme AsCYP51H10 is dispensable for synthesis of essential sterols and has been recruited for the production of antimicrobial compounds (avenacins) that confer disease resistance in oats. The AsCyp51H10 gene is synonymous with Sad2, a gene that we previously had defined by mutation as being required for avenacin synthesis. In earlier work, we showed that Sad1, the gene encoding the first committed enzyme in the avenacin pathway (beta-amyrin synthase), had arisen by duplication and divergence of a cycloartenol synthase-like gene. Together these data indicate an intimate evolutionary connection between the sterol and avenacin pathways. Sad1 and Sad2 lie within 70 kb of each other and are expressed specifically in the epidermal cells of the root tip, the site of accumulation of avenacins. These findings raise intriguing questions about the recruitment, coevolution, and regulation of the components of this specialized defense-related metabolic pathway.


Asunto(s)
Avena/enzimología , Secuencia Conservada , Sistema Enzimático del Citocromo P-450/fisiología , Enfermedades de las Plantas/genética , Esteroles/metabolismo , Secuencia de Aminoácidos , Animales , Avena/genética , Datos de Secuencia Molecular , Familia de Multigenes , Enfermedades de las Plantas/microbiología , Saponinas/genética , Homología de Secuencia de Aminoácido
13.
Mol Microbiol ; 43(1): 135-46, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11849542

RESUMEN

Hybrids of the Streptomyces coelicolor conjugative plasmid SCP2* and the Mycobacterium plasmid pAL5000 were transferred from Streptomyces coelicolor or Streptomyces lividans to Mycobacterium smegmatis mc2155 in plate crosses. Inactivation of the SCP2* transfer function did not prevent or reduce plasmid transfer. This transfer was DNase I sensitive and thus involved release of DNA from Streptomyces, followed by transformation of M. smegmatis. M. smegmatis growing on specific solid media was also transformed by pure CCC and linear plasmid DNA. Small plasmids were taken up intact but large plasmids suffered deletions. Competence developed within 24 h of incubation at 30 degrees C or 37 degrees C, and up to 400 transformants were obtained per microg of CCC plasmid DNA. Transformation frequencies were higher when M. smegmatis was co-cultivated with plasmid-free Streptomyces, but unaffected by resident homologous sequences or inactivation of recA in M. smegmatis. Spontaneous transformation was also observed with a circular Streptomyces transposable element which inserted into chromosomal sites. Transformative plasmid transfer was also shown to occur between M. smegmatis strains. This is the first report of non-artificially induced, spontaneous plasmid transformation in Mycobacterium.


Asunto(s)
ADN Bacteriano , Mycobacterium smegmatis/genética , Plásmidos , Streptomyces/genética , Transformación Bacteriana , Replicación del ADN , Elementos Transponibles de ADN , Desoxirribonucleasa I , Mycobacterium smegmatis/crecimiento & desarrollo , Rec A Recombinasas/metabolismo , Eliminación de Secuencia , Streptomyces/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA