Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 37(8): 1113-1125, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29796947

RESUMEN

KEY MESSAGE: Regulatory sequences from the citrus constitutive genes cyclophilin (CsCYP), glyceraldehyde-3-phosphate dehydrogenase C2 (CsGAPC2), and elongation factor 1-alpha (CsEF1) were isolated, fused to the uidA gene, and qualitatively and quantitatively evaluated in transgenic sweet orange plants. The 5' upstream region of a gene (the promoter) is the most important component for the initiation and regulation of gene transcription of both native genes and transgenes in plants. The isolation and characterization of gene regulatory sequences are essential to the development of intragenic or cisgenic genetic manipulation strategies, which imply the use of genetic material from the same species or from closely related species. We describe herein the isolation and evaluation of the promoter sequence from three constitutively expressed citrus genes: cyclophilin (CsCYP), glyceraldehyde-3-phosphate dehydrogenase C2 (CsGAPC2), and elongation factor 1-alpha (CsEF1). The functionality of the promoters was confirmed by a histochemical GUS assay in leaves, stems, and roots of stably transformed citrus plants expressing the promoter-uidA construct. Lower uidA mRNA levels were detected when the transgene was under the control of citrus promoters as compared to the expression under the control of the CaMV35S promoter. The association of the uidA gene with the citrus-derived promoters resulted in mRNA levels of up to 60-41.8% of the value obtained with the construct containing CaMV35S driving the uidA gene. Moreover, a lower inter-individual variability in transgene expression was observed amongst the different transgenic lines, where gene constructs containing citrus-derived promoters were used. In silico analysis of the citrus-derived promoter sequences revealed that their activity may be controlled by several putative cis-regulatory elements. These citrus promoters will expand the availability of regulatory sequences for driving gene expression in citrus gene-modification programs.


Asunto(s)
Citrus sinensis/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Citrus sinensis/genética , Ciclofilinas/genética , Ciclofilinas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/genética
2.
Plant Dis ; 90(8): 1026-1030, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30781294

RESUMEN

We report the use of the coat protein (CP) gene from Passion fruit woodiness virus (PWV) to produce resistant transgenic plants of yellow passion fruit. A full-length CP gene from a severe PWV isolate from the state of São Paulo, Brazil (PWV-SP) was cloned into pCAMBIA 2300 binary vector, which was further introduced into Agrobacterium tumefaciens strain EHA 105. Leaf disks were used as explants for transformation assays, e.g., 2,700 and 2,730 disks excised from plants from the Brazilian cultivars IAC-275 and IAC-277, respectively. In vitro selection was performed in kanamycin. After transferring to the elongation medium, 119 and 109 plantlets of IAC-275 and IAC-277, respectively, were recovered. Integration of the PWV CP gene was confirmed in seven of eight plants evaluated by Southern blot analysis, showing different numbers of insertional events for the CP gene. Three transgenic plants (T3, T4, and T7) expressed the expected transcript, but the 32 kDa PWV CP was detected by Western blot in only two plants (T3 and T4). The results of three successive mechanical inoculations against the transgenic plants using three PWV isolates showed that the primary transformant T2 of IAC-277 was immune to all isolates.

3.
Plant Cell Rep ; 22(2): 122-8, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12879258

RESUMEN

A new method for obtaining transgenic sweet orange plants was developed in which positive selection (Positech) based on the Escherichia coli phosphomannose-isomerase (PMI) gene as the selectable marker gene and mannose as the selective agent was used. Epicotyl segments from in vitro-germinated plants of Valencia, Hamlin, Natal and Pera sweet oranges were inoculated with Agrobacterium tumefaciens EHA101-pNOV2116 and subsequently selected on medium supplemented with different concentrations of mannose or with a combination of mannose and sucrose as a carbon source. Genetic transformation was confirmed by PCR and Southern blot. The transgene expression was evaluated using a chlorophenol red assay and isoenzymes. The transformation efficiency rate ranged from 3% to 23.8%, depending on cultivar. This system provides an efficient manner for selecting transgenic sweet orange plants without using antibiotics or herbicides.


Asunto(s)
Citrus sinensis/genética , Manosa-6-Fosfato Isomerasa/genética , Manosa/farmacología , Plantas Modificadas Genéticamente/genética , Citrus sinensis/efectos de los fármacos , Citrus sinensis/crecimiento & desarrollo , Técnicas de Cultivo , Fructosa/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Marcadores Genéticos/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Sacarosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA