Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Intervalo de año de publicación
1.
Microb Pathog ; 188: 106537, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211834

RESUMEN

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides spp. The interaction mediated by the presence of adhesins on the fungal surface and receptors in the extracellular matrix of the host, as well as the biofilm formation, is essential in its pathogenesis. Adhesins such as gp43, enolase, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and 14-3-3 have been demonstrated in the Paracoccidioides brasiliensis (Pb18) strain and recognized as necessary in the fungus-host interaction. The Pb 18 strain silenced to 14-3-3 showed changes in morphology, virulence, and adhesion capacity. The study aimed to evaluate the role of adhesin 14-3-3 in P. brasiliensis biofilm formation and the differential expression of genes related to adhesins, comparing planktonic and biofilm forms. The presence of biofilm was also verified in sutures in vitro and in vivo. The silenced strain (Pb14-3-3 aRNA) was compared with the wild type Pb18, determining the differential metabolic activity between the strains by the XTT reduction assay; the biomass by violet crystal and the polysaccharides by safranin, even as morphological differences by microscopic techniques. Differential gene expression for adhesins was also analyzed, comparing the relative expression of these in planktonic and biofilm forms at different times. The results suggested that the silencing of 14-3-3 protein altered the ability to form biofilm and its metabolism. The quantity of biomass was similar in both strains; however, the formation of exopolymeric substances and polysaccharide material was lower in the silenced strain. Our results showed increased expression of enolase, GAPDH, and 14-3-3 genes in the first periods of biofilm formation in the Pb18 strain. In contrast, the silenced strain showed a lower expression of these genes, indicating that gene silencing can influence the expression of other genes and be involved in the biofilm formation of P. brasiliensis. In vitro and in vivo assays using sutures confirmed this yeast's ability to form biofilm and may be implicated in the pathogenesis of paracoccidioidomycosis.


Asunto(s)
Paracoccidioides , Paracoccidioidomicosis , Paracoccidioides/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas , Biopelículas , Adhesinas Bacterianas/metabolismo , Fosfopiruvato Hidratasa/genética
2.
Antimicrob Agents Chemother ; 65(12): e0090421, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34516241

RESUMEN

Cryptococcosis is associated with high rates of morbidity and mortality, especially in AIDS patients. Its treatment is carried out by combining amphotericin B and azoles or flucytosine, which causes unavoidable toxicity issues in the host. Thus, the urgency in obtaining new antifungals drives the search for antimicrobial peptides (AMPs). This study aimed to extend the understanding of the mechanism of action of an AMP analog from wasp peptide toxins, MK58911-NH2, on Cryptococcus neoformans. We also evaluated if MK58911-NH2 can act on cryptococcal cells in macrophages, biofilms, and an immersion zebrafish model of infection. Finally, we investigated the structure-antifungal action and the toxicity relationship of MK58911-NH2 fragments and a derivative of this peptide (MH58911-NH2). The results demonstrated that MK58911-NH2 did not alter the fluorescence intensity of the cell wall-binding dye calcofluor white or the capsule-binding dye 18b7 antibody-fluorescein isothiocyanate (FITC) in C. neoformans but rather reduced the number and size of fungal cells. This activity reduced the fungal burden of C. neoformans in both macrophages and zebrafish embryos as well as within biofilms. Three fragments of the MK58911-NH2 peptide showed no activity against Cryptococcus and not toxicity in lung cells. The derivative peptide MH58911-NH2, in which the lysine residues of MK58911-NH2 were replaced by histidines, reduced the activity against extracellular and intracellular C. neoformans. On the other hand, it was active against biofilms and showed reduced toxicity. In summary, these results showed that peptide MK58911-NH2 could be a promising agent against cryptococcosis. This work also opens a perspective for the verification of the antifungal activity of other derivatives.


Asunto(s)
Antifúngicos/farmacología , Péptidos Antimicrobianos/farmacología , Cryptococcus neoformans , Animales , Biopelículas , Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/efectos de los fármacos , Humanos , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Pez Cebra
3.
Mem Inst Oswaldo Cruz ; 116: e200592, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33787770

RESUMEN

BACKGROUND: Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in Latin America that is caused by thermodimorphic fungal species of the Paracoccidioides genus. OBJECTIVES: In this study, we used quantitative polymerase chain reaction (qPCR) to investigate the expression of genes related to the virulence of Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb01) strains in their mycelial (M) and yeast (Y) forms after contact with alveolar macrophages (AMJ2-C11 cell line) and fibroblasts (MRC-5 cell line). METHODS: The selected genes were those coding for 43 kDa glycoprotein (gp43), enolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 14-3-3 protein (30 kDa), phospholipase, and aspartyl protease. FINDINGS: In the Pb18 M form, the aspartyl protease gene showed the highest expression among all genes tested, both before and after infection of host cells. In the Pb18 Y form after macrophage infection, the 14-3-3 gene showed the highest expression among all genes tested, followed by the phospholipase and gp43 genes, and their expression was 50-fold, 10-fold, and 6-fold higher, respectively, than that in the M form. After fibroblast infection with the Pb18 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 25-fold, 10-fold, and 10-fold higher, respectively, than that in the M form. Enolase and aspartyl protease genes were expressed upon infection of both cell lines. After macrophage infection with the Pb01 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 18-fold, 12.5-fold, and 6-fold higher, respectively, than that in the M form. MAIN CONCLUSIONS: In conclusion, the data show that the expression of the genes analysed may be upregulated upon fungus-host interaction. Therefore, these genes may be involved in the pathogenesis of paracoccidioidomycosis.


Asunto(s)
Fibroblastos , Macrófagos , Paracoccidioides/genética , Paracoccidioidomicosis/genética , Factores de Virulencia/genética , Expresión Génica , Humanos , América Latina , Paracoccidioides/patogenicidad
4.
Artículo en Inglés | MEDLINE | ID: mdl-31988099

RESUMEN

Amphotericin B (AmB) is the antifungal with the strongest fungicidal activity, but its use has several limitations, mainly associated with its toxicity. Although some lipidic and liposomal formulations that present reduced toxicity are available, their price limits their application in developing countries. Flucytosine (5FC) has shown synergistic effect with AmB for treatment of some fungal infections, such as cryptococcosis, but again, its price is a limitation for its use in many regions. In the present work, we aimed to identify new drugs that have a minor effect on Cryptococcus neoformans, reducing its growth in the presence of subinhibitory concentrations of AmB. In the initial screening, we found fourteen drugs that had this pattern. Later, checkerboard assays of selected compounds, such as erythromycin, riluzole, nortriptyline, chenodiol, nisoldipine, promazine, chlorcyclizine, cloperastine, and glimepiride, were performed and all of them confirmed for their synergistic effect (fractional inhibitory concentration index [FICI] < 0.5). Additionally, toxicity of these drugs in combination with AmB was tested in mammalian cells and in zebrafish embryos. Harmless compounds, such as the antibiotic erythromycin, were found to have synergic activity with AmB, not only against C. neoformans but also against some Candida spp., in particular against Candida albicans In parallel, we identified drugs that had antifungal activity against C. neoformans and found 43 drugs that completely inhibited the growth of this fungus, such as ciclopirox and auranofin. Our results expand our knowledge about antifungal compounds and open new perspectives in the treatment of invasive mycosis based on repurposing off-patent drugs.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Reposicionamiento de Medicamentos , Animales , Auranofina/farmacología , Candidiasis/tratamiento farmacológico , Línea Celular , Ciclopirox/farmacología , Criptococosis/tratamiento farmacológico , Evaluación Preclínica de Medicamentos/métodos , Sinergismo Farmacológico , Eritromicina/farmacología , Flucitosina/farmacología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/microbiología , Células RAW 264.7 , Pez Cebra/embriología
5.
Mem Inst Oswaldo Cruz ; 115: e200238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32756740

RESUMEN

BACKGROUND Paracoccidioides spp. causes paracoccidioidomycosis (PCM), an important and frequent systemic mycosis that occurs in Latin America. The infectious process begins with contact between the fungus and lung cells, and the molecular pattern of this interaction is currently poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the gene expression in many biological processes, including in the infections. OBJECTIVE This study aimed to analyse the expression of miRNAs in lung cells as response to infection by Paracoccidioides spp. METHODS A quantitative real-time polymerase chain reaction (RT-qPCR) based screening was employed to verify differentially expressed miRNAs in human lung cells infected with three different species; Paracoccidioides lutzii, Paracoccidioides americana, and Paracoccidioides brasiliensis. Furthermore, the in silico predictions of target genes and pathways for miRNAs were obtained. FINDINGS The results showed that miRNAs identified in the lung cells were different according to the species studied. However, based on the predicted targets, the potential signaling pathways regulated by miRNAs are common and related to adhesion, actin cytoskeleton rearrangement, apoptosis, and immune response mediated by T cells and TGF-ß. MAIN CONCLUSIONS In summary, this study showed the miRNAs pattern of epithelial cells in response to infection by Paracoccidioides species and the potential role of these molecules in the regulation of key pathogenesis mechanisms of PCM.


Asunto(s)
MicroARNs , Paracoccidioides , Paracoccidioidomicosis , Humanos , América Latina , Pulmón/citología , MicroARNs/metabolismo , Paracoccidioides/patogenicidad , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Med Mycol ; 57(7): 900-904, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476159

RESUMEN

The Paracoccidioides brasiliensis strain downregulated the expression of adhesin Pb14-3-3 (Pb14-3-3 aRNA) was evaluated in a murine model of paracoccidioidomycosis (PCM). Pb14-3-3 aRNA displays attenuated virulence and triggered the formation of fewer granulomas by lowering the fungal burden in the lungs. Additionally, the Pb14-3-3 aRNA showed more elongated yeast cells and less ability to induce pneumocytes apoptosis in vitro. Our results show that 14-3-3 is an important virulence factor in P. brasiliensis-induced pulmonary infection.


Asunto(s)
Proteínas 14-3-3/genética , Proteínas Fúngicas/genética , Paracoccidioides/genética , Paracoccidioides/patogenicidad , Factores de Virulencia/genética , Células Epiteliales Alveolares/microbiología , Células Epiteliales Alveolares/patología , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Expresión Génica , Pulmón/citología , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Paracoccidioidomicosis/microbiología
7.
Med Mycol ; 56(3): 374-377, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637229

RESUMEN

Paracoccidioidomycosis (PCM) is a fungal disease restricted to Latin countries, and its etiologic agents derive from the Paracoccidioides genus. Attenuation or loss of virulence in Paracoccidioides spp. following successive subculturing has been described. However, virulence can be recovered by passage in mammalian host. In this study, the recovery of adhesion of P. brasiliensis through passage in mice was compared to that in the insect Galleria mellonella. Analysis of in vitro fungal-host cell interaction, gene expression of adhesins, and analysis of the survival curves revealed that Galleria mellonella is useful for the reactivation of P. brasiliensis adhesion.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Mariposas Nocturnas/microbiología , Paracoccidioides/patogenicidad , Paracoccidioidomicosis/microbiología , Paracoccidioidomicosis/mortalidad , Factores de Virulencia/metabolismo , Adhesinas Bacterianas/genética , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Paracoccidioides/genética , Paracoccidioidomicosis/patología , Tasa de Supervivencia , Virulencia/genética , Factores de Virulencia/genética
8.
Med Mycol ; 55(8): 890-894, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339963

RESUMEN

Apoptosis is considered an escape mechanism from the host immune system for the fungus Paracoccidioides spp, and it serves as a vehicle for entry into macrophages without stimulating microbicidal activities. Recently, gp43 of P. brasiliensis was demonstrated to be involved in this process. Therefore, as a new therapeutic alternative, it is very important to study compounds that could reduce the modulation of the induction of apoptosis caused by this fungus. Decyl gallate (G14) is a known antifungal compound, and we decided to investigate its anti-apoptotic properties. Our results demonstrate that G14 was effective against apoptosis induced by gp43, as observed in epithelial cells, and led to a reduction in DNA damage, Bak down-regulation and Bcl-2 up-regulation. Together, these data show that G14 presents promising anti-apoptotic activity.


Asunto(s)
Antifúngicos/farmacología , Apoptosis/efectos de los fármacos , Glicoproteínas/fisiología , Paracoccidioides/fisiología , Células A549 , Células Epiteliales Alveolares/microbiología , Células Epiteliales Alveolares/patología , Antígenos Fúngicos/metabolismo , Línea Celular , Daño del ADN/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Genes bcl-2/genética , Humanos , Paracoccidioidomicosis/fisiopatología , Proteína Destructora del Antagonista Homólogo bcl-2/genética
9.
Nanomedicine ; 13(7): 2267-2270, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28712918

RESUMEN

Systemic therapies are preferred for treating dermal dermatophytosis due to inadequate penetration of topical agents. However, systemic antifungals are associated with off-target effects and limited tissue penetration, and antimicrobial resistance is a growing concern. To address this, we investigated topical nitric oxide-releasing nanoparticles (NO-np), which have been used against superficial fungal infections and bacterial abscesses. In addition to enhanced penetration and permeation conferred by nanoparticles, nitric oxide, a broad-spectrum multi-mechanistic antimicrobial agent, offers decreased likelihood of resistance development. In the current study, NO-np inhibited Trichophyton rubrum in vitro, as well as in a murine model of dermal dermatophytosis. In mice, NO-np reduced fungal burden after three days, with complete clearance after seven. Furthermore, NO-np decreased tissue IL-2, 6, 10 and TNFα, indicating earlier attenuation of the host inflammatory response and decreased tissue morbidity. Thus, topical NO-np represent an attractive alternative to systemic therapy against dermal T. rubrum infection.


Asunto(s)
Antifúngicos/uso terapéutico , Nanopartículas/uso terapéutico , Óxido Nítrico/uso terapéutico , Tiña/tratamiento farmacológico , Trichophyton/efectos de los fármacos , Administración Cutánea , Animales , Antifúngicos/administración & dosificación , Modelos Animales de Enfermedad , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/microbiología , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Óxido Nítrico/administración & dosificación , Tiña/complicaciones , Tiña/microbiología
10.
FEMS Yeast Res ; 16(7)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27634774

RESUMEN

Paracoccidioides spp., which are temperature-dependent dimorphic fungi, are responsible for the most prevalent human systemic mycosis in Latin America, the paracoccidioidomycosis. The aim of this study was to characterise the involvement of elongation factor Tu (EF-Tu) in Paracoccidioides brasiliensis-host interaction. Adhesive properties were examined using recombinant PbEF-Tu proteins and the respective polyclonal anti-rPbEF-Tu antibody. Immunogold analysis demonstrated the surface location of EF-Tu in P. brasiliensis. Moreover, PbEF-Tu was found to bind to fibronectin and plasminogen by enzyme-linked immunosorbent assay, and it was determined that the binding to plasminogen is at least partly dependent on lysine residues and ionic interactions. To verify the participation of EF-Tu in the interaction of P. brasiliensis with pneumocytes, we blocked the respective protein with an anti-rPbEF-Tu antibody and evaluated the consequences on the interaction index by flow cytometry. During the interaction, we observed a decrease of 2- and 3-fold at 8 and 24 h, respectively, suggesting the contribution of EF-Tu in fungal adhesion/invasion.


Asunto(s)
Interacciones Huésped-Patógeno , Paracoccidioides/enzimología , Factor Tu de Elongación Peptídica/metabolismo , Factores de Virulencia/metabolismo , Células Epiteliales Alveolares/microbiología , Adhesión Celular , Línea Celular , Fibronectinas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Paracoccidioides/fisiología , Plasminógeno/metabolismo , Unión Proteica
11.
Med Mycol ; 54(5): 515-23, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26868902

RESUMEN

Dental prosthesis supports Candida species growth and may predispose the oral cavity to lesions. C. tropicalis has emerged as a colonizer of prosthesis and has shown resistance to clinically used antifungal agents, which has increased the search for new antifungals. This work describes the effectiveness of fifteen essential oils (EOs) against C. tropicalis The EOs were obtained by hydrodistillation and were chemically characterized by gas chromatography-mass spectrometry. The antifungal activities of the EOs were evaluated by the microdilution method and showed that Pelargonium graveolens (Geraniaceae) (PG-EO) was the most effective oil. Geraniol and linalool were the major constituents of PG-EO. The 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) assay showed that all the clinical C. tropicalis strains formed viable biofilms. Scanning electron microscopy examination of the biofilms revealed a complex architecture with basal layer of yeast cells and an upper layer of filamentous cells. Treatments with PG-EO, linalool, and geraniol significantly reduced the number of viable biofilm cells and inhibited biofilm formation after exposure for 48 h. PG-EO, geraniol, and linalool were not toxic to normal human lung fibroblasts (GM07492A) at the concentrations they were active against C. tropicalis Together, our results indicated that C. tropicalis is susceptible to treatment with PG-EO, geraniol, and linalool, which could become options to prevent or treat this infection.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida tropicalis/efectos de los fármacos , Aceites Volátiles/farmacología , Pelargonium/química , Monoterpenos Acíclicos , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antifúngicos/toxicidad , Candida tropicalis/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Rastreo , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Monoterpenos/toxicidad , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/toxicidad , Terpenos/aislamiento & purificación , Terpenos/farmacología , Terpenos/toxicidad
12.
BMC Microbiol ; 15: 256, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26537993

RESUMEN

BACKGROUND: 14-3-3 proteins comprise a family of eukaryotic multifunctional proteins involved in several cellular processes. The Pb14-3-3 of Paracoccidioides brasiliensis seems to play an important role in the Paracoccidioides-host interaction. Paracoccidioides brasiliensis is an etiological agent of paracoccidioidomycosis, which is a systemic mycosis that is endemic in Latin America. In the initial steps of the infection, Paracoccidioides spp. synthetizes adhesins that allow it to adhere and invade host cells. Therefore, the aim of this work was to perform a functional analysis of Pb14-3-3 using Saccharomyces cerevisiae as a model. RESULTS: The functional analysis of Pb14-3-3 was performed in S. cerevisiae, and it was found that Pb14-3-3 partially complemented S. cerevisiae proteins Bmh1p and Bmh2p, which are recognized as two yeast 14-3-3 homologues. When we evaluated the adhesion profile of S. cerevisiae transformants, Pb14-3-3 acted as an adhesin in S. cerevisiae; however, Bmh1p did not show this function. The influence of Pb14-3-3 in S. cerevisiae ergosterol pathway was also evaluated and our results showed that Pb14-3-3 up-regulates genes involved in ergosterol biosynthesis. CONCLUSIONS: Our data showed that Pb14-3-3 was able to partially complement Bmh1p and Bmh2p proteins in S. cerevisiae; however, we suggest that Pb14-3-3 has a differential role as an adhesin. In addition, Pb-14-3-3 may be involved in Paracoccidioides spp. ergosterol biosynthesis which makes it an interest as a therapeutic target.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Fúngicas/metabolismo , Paracoccidioides/genética , Saccharomyces cerevisiae/genética , Proteínas 14-3-3/genética , Clonación Molecular , Ergosterol/metabolismo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Paracoccidioides/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mem Inst Oswaldo Cruz ; 110(4): 476-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26038961

RESUMEN

The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensis uses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis.


Asunto(s)
Proteínas 14-3-3/fisiología , Antígenos Fúngicos/fisiología , Apoptosis , Células Epiteliales/microbiología , Proteínas Fúngicas/fisiología , Glicoproteínas/fisiología , Paracoccidioides/fisiología , Línea Celular/microbiología , Citometría de Flujo , Humanos , Etiquetado Corte-Fin in Situ , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
BMC Microbiol ; 14: 302, 2014 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-25609357

RESUMEN

BACKGROUND: Paracoccidioides spp is a fungi genus and the agent of paracoccidioidomycosis. The strategies of infection used by these pathogens involve the expression of proteins related to adaptation to the host, particularly regarding the uptake of micronutrients. This study analyzed the adhesion of Paracoccidioides lutzii during conditions of copper (Cu) and iron (Fe) deprivation, while also evaluating the proteins expressed in conditions of Cu depletion in the presence of four extracellular matrix (ECM) components (laminin, fibronectin and types I and IV collagen). RESULTS: We cultured the P. lutzii in a chemically defined media without Cu and Fe. The fungus was then placed in contact with different ECM components and adhesion was evaluated. A significant increase in binding to all ECM components was observed when the fungus was cultured without Cu; which might be related to some adhesins expression. A proteomic assay was developed and revealed 39 proteins expressed that are involved in processes such as virulence, protein synthesis, metabolism, energy, transcription, transport, stress response and the cell cycle when the fungus was interacting with the ECM components. The up-regulated expression of two important adhesins, enolase and 14-3-3, was observed at the fungal cell wall during the interaction with the ECM components, indicating the role of these proteins in the Paracoccidioides-host interaction. CONCLUSIONS: This study is important for determining prospective proteins that may be involved in the interaction of Paracoccidioides with a host. Understanding the adaptive response to different growth conditions, elucidating the processes of adhesion and cell invasion, and identifying the proteins that are differentially expressed during the fungus-host interaction may help elucidate mechanisms used for survival and growth of Paracoccidioides in various human tissues.


Asunto(s)
Adhesión Celular , Cobre/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Paracoccidioides/fisiología , Animales , Medios de Cultivo/química , Proteínas Fúngicas/análisis , Hierro/metabolismo , Paracoccidioides/genética , Paracoccidioides/crecimiento & desarrollo , Paracoccidioides/metabolismo , Proteoma/análisis , Conejos
15.
Eukaryot Cell ; 12(7): 1033-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23709181

RESUMEN

The MAT1-1 and MAT1-2 idiomorphs associated with the MAT1 locus of Histoplasma capsulatum were identified by PCR. A total of 28 fungal isolates, 6 isolates from human clinical samples and 22 isolates from environmental (infected bat and contaminated soil) samples, were studied. Among the 14 isolates from Mexico, 71.4% (95% confidence interval [95% CI], 48.3% to 94.5%) were of the MAT1-2 genotype, whereas 100% of the isolates from Brazil were of the MAT1-1 genotype. Each MAT1 idiomorphic region was sequenced and aligned, using the sequences of the G-217B (+ mating type) and G-186AR (- mating type) strains as references. BLASTn analyses of the MAT1-1 and MAT1-2 sequences studied correlated with their respective + and - mating type genotypes. Trees were generated by the maximum likelihood (ML) method to search for similarity among isolates of each MAT1 idiomorph. All MAT1-1 isolates originated from Brazilian bats formed a well-defined group; three isolates from Mexico, the G-217B strain, and a subgroup encompassing all soil-derived isolates and two clinical isolates from Brazil formed a second group; last, one isolate (EH-696P) from a migratory bat captured in Mexico formed a third group of the MAT1-1 genotype. The MAT1-2 idiomorph formed two groups, one of which included two H. capsulatum isolates from infected bats that were closely related to the G-186AR strain. The other group was formed by two human isolates and six isolates from infected bats. Concatenated ML trees, with internal transcribed spacer 1 (ITS1) -5.8S-ITS2 and MAT1-1 or MAT1-2 sequences, support the relatedness of MAT1-1 or MAT1-2 isolates. H. capsulatum mating types were associated with the geographical origin of the isolates, and all isolates from Brazil correlated with their environmental sources.


Asunto(s)
Genes del Tipo Sexual de los Hongos/genética , Sitios Genéticos/genética , Variación Genética , Histoplasma/genética , Histoplasma/aislamiento & purificación , Secuencia de Bases , Brasil , ADN Intergénico/genética , Humanos , Funciones de Verosimilitud , México , Datos de Secuencia Molecular
16.
Curr Res Microb Sci ; 7: 100246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022313

RESUMEN

Over the last two decades, the incidence of Invasive Fungal Infections (IFIs) globally has risen, posing a considerable challenge despite available antifungal therapies. Addressing this, the World Health Organization (WHO) prioritized research on specific fungi, notably Histoplasma spp. and Paracoccidioides spp. These dimorphic fungi have a mycelial life cycle in soil and a yeast phase associated with tissues of mammalian hosts. Inhalation of conidia and mycelial fragments initiates the infection, crucially transforming into the yeast form within the host, influenced by factors like temperature, host immunity, and hormonal status. Survival and multiplication within alveolar macrophages are crucial for disease progression, where innate immune responses play a pivotal role in overcoming physical barriers. The transition to pathogenic yeast, triggered by increased temperature, involves yeast phase-specific gene expression, closely linked to infection establishment and pathogenicity. Cell adhesion mechanisms during host-pathogen interactions are intricately linked to fungal virulence, which is critical for tissue colonization and disease development. Yeast replication within macrophages leads to their rupture, aiding pathogen dissemination. Immune cells, especially macrophages, dendritic cells, and neutrophils, are key players during infection control, with macrophages crucial for defense, tissue integrity, and pathogen elimination. Recognition of common virulence molecules such as heat- shock protein-60 (Hsp60) and enolase by pattern recognition receptors (PRRs), mainly via the complement receptor 3 (CR3) and plasmin receptor pathways, respectively, could be pivotal in host-pathogen interactions for Histoplasma spp. and Paracoccidioides spp., influencing adhesion, phagocytosis, and inflammatory regulation. This review provides a comprehensive overview of the dynamic of these two IFIs between host and pathogen. Further research into these fungi's virulence factors promises insights into pathogenic mechanisms, potentially guiding the development of effective treatment strategies.

17.
J Fungi (Basel) ; 10(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786716

RESUMEN

Histoplasma capsulatum causes a fungal respiratory disease. Some studies suggest that the fungus requires zinc to consolidate the infection. This study aimed to investigate the influence of zinc and the metal chelator TPEN on the growth of Histoplasma in planktonic and biofilm forms. The results showed that zinc increased the metabolic activity, cell density, and cell viability of planktonic growth. Similarly, there was an increase in biofilm metabolic activity but no increase in biomass or extracellular matrix production. N'-N,N,N,N-tetrakis-2-pyridylmethylethane-1,2 diamine (TPEN) dramatically reduced the same parameters in the planktonic form and resulted in a decrease in metabolic activity, biomass, and extracellular matrix production for the biofilm form. Therefore, the unprecedented observations in this study highlight the importance of zinc ions for the growth, development, and proliferation of H. capsulatum cells and provide new insights into the role of metal ions for biofilm formation in the dimorphic fungus Histoplasma, which could be a potential therapeutic strategy.

18.
Front Microbiol ; 15: 1354140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516014

RESUMEN

The genus Paracoccidioides includes Paracoccidioides lutzii and the Paracoccidioides brasiliensis complex, which comprises four phylogenetic species. A key feature distinguishing planktonic growth from biofilm is the presence of a 3D extracellular matrix (ECM). Therefore, in this study, we analyzed biofilm formation in different species of Paracoccidioides yeast phase, characterized the structural elements of the matrix of P. brasiliensis (Pb18), P. lutzii (Pl01 and 8334) and P. restrepiensis (339 and 192) and evaluated the expression of glucan genes, according to the stage of biofilm evolution for P. brasiliensis. The strains were cultivated in planktonic and biofilm form for 24-144 h. The fungi biomass and metabolic activity were determined by crystal violet and tetrazolium salt reduction (XTT) tests and colony-forming unit (CFU) by plating. The biofilm structure was designed using scanning electron microscopy and confocal laser scanning microscopy techniques. The extracellular matrix of P. brasiliensis and P. lutzii biofilms was extracted by sonication, and polysaccharides, proteins, and extracellular DNA (eDNA) were quantified. The RNA was extracted with the Trizol® reagent and quantified; then, the cDNA was synthesized to analyze the enolase expression, 14-3-3, FKS1, AGS1, GEL3, and KRE6 genes by real-time PCR. All strains of Paracoccidioides studied form a biofilm with more significant metabolic activity and biomass values in 144 h. The extracellular matrix of P. brasiliensis and P. lutzii had a higher content of polysaccharides in their composition, followed by proteins and eDNA in smaller quantities. The P. brasiliensis biofilm kinetics of formation showed greater expression of genes related to glucan's synthesis and its delivery to the external environment in addition adhesins during the biofilm's adhesion, initiation, and maturation. The GEL3 and enolase genes increased in expression within 24 h and during the biofilm maturation period, there was an increase in 14-3-3, AGS1, and FKS1. Furthermore, at 144 h, there was a decrease in KRE6 expression and an increase in GEL3. This study highlights the potential for biofilm formation for three species of Paracoccidioides and the main components of the extracellular matrix that can contribute to a better understanding of biofilm organization.

19.
Pharmaceutics ; 16(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065540

RESUMEN

Vulvovaginal candidiasis (VVC) remains a prevalent fungal disease, characterized by challenges, such as increased fungal resistance, side effects of current treatments, and the rising prevalence of non-albicans Candida spp. naturally more resistant. This study aimed to propose a novel therapeutic approach by investigating the antifungal properties and toxicity of 2-hydroxychalcone (2-HC) and 3'-hydroxychalcone (3'-HC), both alone and in combination with fluconazole (FCZ) and clotrimazole (CTZ). A lipid carrier (LC) was also developed to deliver these molecules. The study evaluated in vitro anti-Candida activity against five Candida species and assessed cytotoxicity in the C33-A cell line. The safety and therapeutic efficacy of in vivo were tested using an alternative animal model, Galleria mellonella. The results showed antifungal activity of 2-HC and 3'-HC, ranging from 7.8 to 31.2 as fungistatic and 15.6 to 125.0 mg/L as fungicide effect, with cell viability above 80% from a concentration of 9.3 mg/L (2-HC). Synergistic and partially synergistic interactions of these chalcones with FCZ and CTZ demonstrated significant improvement in antifungal activity, with MIC values ranging from 0.06 to 62.5 mg/L. Some combinations reduced cytotoxicity, achieving 100% cell viability in many interactions. Additionally, two LCs with suitable properties for intravaginal application were developed. These formulations demonstrated promising therapeutic efficacy and low toxicity in Galleria mellonella assays. These results suggest the potential of this approach in developing new therapies for VVC.

20.
J Control Release ; 365: 744-758, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072085

RESUMEN

Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.


Asunto(s)
Candidiasis , Infección de Heridas , Humanos , Anfotericina B , Antifúngicos/química , Vendajes , Candida albicans , Candidiasis/tratamiento farmacológico , Látex , Pruebas de Sensibilidad Microbiana , Infección de Heridas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA