Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plant Physiol ; 195(1): 785-798, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38159040

RESUMEN

Rice (Oryza sativa) bacterial blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo), threatens plant growth and yield. However, the molecular mechanisms underlying rice immunity against Xoo remain elusive. Here, we identified a NAC (NAM-ATAF-CUC) transcription factor OsNAC2 as a negative regulator in the resistance to bacterial blight disease in rice. Constitutive overexpression of OsNAC2 inhibited the expression of salicylic acid (SA) biosynthesis-related genes (i.e. isochorismate synthase 1 (OsICS1), phenylalanine ammonia lyase 3 (OsPAL3), etc.) with adverse impacts on the pathogenesis-related proteins (PRs) responses and compromised blight resistance. Moreover, OsNAC2 interacted with APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factor OsEREBP1 and possibly threatened its protein stability, destroying the favorable interaction of OsEREBP1-Xa21-binding protein OsXb22a in the cytoplasm during Xoo-induced infection. On the contrary, downregulation of OsNAC2 resulted in enhanced resistance to bacterial blight in rice without any growth or yield penalties. Our results demonstrated that OsNAC2 inhibits SA signaling and stably interacted with OsEREBP1 to impair disease resistance. This OsNAC2-OsEREBP1-based homeostatic mechanism provided insights into the competition between rice and bacterial pathogens, and it will be useful to improve the disease resistance of important crops through breeding.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Homeostasis , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Xanthomonas , Oryza/genética , Oryza/microbiología , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/fisiología , Xanthomonas/patogenicidad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo
2.
Plant Cell ; 34(8): 3066-3087, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35543483

RESUMEN

Camalexin, an indolic antimicrobial metabolite, is the major phytoalexin in Arabidopsis thaliana, and plays a crucial role in pathogen resistance. Our previous studies revealed that the Arabidopsis mitogen-activated protein kinases MPK3 and MPK6 positively regulate pathogen-induced camalexin biosynthesis via phosphoactivating the transcription factor WRKY33. Here, we report that the ethylene and jasmonate (JA) pathways act synergistically with the MPK3/MPK6-WRKY33 module at multiple levels to induce camalexin biosynthesis in Arabidopsis upon pathogen infection. The ETHYLENE RESPONSE FACTOR1 (ERF1) transcription factor integrates the ethylene and JA pathways to induce camalexin biosynthesis via directly upregulating camalexin biosynthetic genes. ERF1 also interacts with and depends on WRKY33 to upregulate camalexin biosynthetic genes, indicating that ERF1 and WRKY33 form transcriptional complexes to cooperatively activate camalexin biosynthetic genes, thereby mediating the synergy of ethylene/JA and MPK3/MPK6 signaling pathways to induce camalexin biosynthesis. Moreover, as an integrator of the ethylene and JA pathways, ERF1 also acts as a substrate of MPK3/MPK6, which phosphorylate ERF1 to increase its transactivation activity and therefore further cooperate with the ethylene/JA pathways to induce camalexin biosynthesis. Taken together, our data reveal the multilayered synergistic regulation of camalexin biosynthesis by ethylene, JA, and MPK3/MPK6 signaling pathways via ERF1 and WRKY33 transcription factors in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Oxilipinas , Sesquiterpenos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fitoalexinas
3.
New Phytol ; 238(3): 1045-1058, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36772858

RESUMEN

Proper stamen filament elongation is essential for plant self-pollination and reproduction. Several phytohormones such as jasmonate and gibberellin play important roles in controlling filament elongation, but other endogenous signals involved in this developmental process remain unknown. We report here that three EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family peptides, EPFL4, EPFL5 and EPFL6, act redundantly to promote stamen filament elongation via enhancing filament cell proliferation in Arabidopsis thaliana. Knockout of EPFL4-6 genes led to shortened filaments due to defective filament cell proliferation, resulting in pollination failure and male sterility. Further genetic and biochemical analyses indicated that the ERECTA family and the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family RLKs form receptor complexes to perceive EPFL4-6 peptides and promote filament cell proliferation. Moreover, based on both loss- and gain-of-function genetic analyses, the mitogen-activated protein kinase cascade MKK4/MKK5-MPK6 was shown to function downstream of EPFL4-6 to positively regulate cell proliferation in stamen filaments. Together, this study reveals that an EPFL peptide signaling pathway composed of the EPFL4-6 peptide ligands, the ERECTA-SERK receptor complexes and the downstream MKK4/MKK5-MPK6 cascade promotes stamen filament elongation via enhancing filament cell proliferation to ensure successful self-pollination and normal fertility in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Polinización , Transducción de Señal , Proliferación Celular , Péptidos/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Cell ; 32(8): 2621-2638, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32439826

RESUMEN

Camalexin is a major phytoalexin that plays a crucial role in disease resistance in Arabidopsis (Arabidopsis thaliana). We previously characterized the regulation of camalexin biosynthesis by the mitogen-activated protein kinases MPK3 and MPK6 and their downstream transcription factor WRKY33. Here, we report that the pathogen-responsive CALCIUM-DEPENDENT PROTEIN KINASE5 (CPK5) and CPK6 also regulate camalexin biosynthesis in Arabidopsis. Chemically induced expression of constitutively active CPK5 or CPK6 variants was sufficient to induce camalexin biosynthesis in transgenic Arabidopsis plants. Consistently, the simultaneous mutation of CPK5 and CPK6 compromised camalexin production in Arabidopsis induced by the fungal pathogen Botrytis cinerea Moreover, we identified that WRKY33 functions downstream of CPK5/CPK6 to activate camalexin biosynthetic genes, thereby inducing camalexin biosynthesis. CPK5 and CPK6 interact with WRKY33 and phosphorylate its Thr-229 residue, leading to an increase in the DNA binding ability of WRKY33. By contrast, the MPK3/MPK6-mediated phosphorylation of WRKY33 on its N-terminal Ser residues enhances the transactivation activity of WRKY33. Furthermore, both gain- and loss-of-function genetic analyses demonstrated the cooperative regulation of camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6. Taken together, these findings indicate that WRKY33 functions as a convergent substrate of CPK5/CPK6 and MPK3/MPK6, which cooperatively regulate camalexin biosynthesis via the differential phospho-regulation of WRKY33 activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vías Biosintéticas , Indoles/metabolismo , Tiazoles/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/microbiología , Botrytis , ADN de Plantas/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Fosforilación , Enfermedades de las Plantas/microbiología , Activación Transcripcional/genética
5.
Plant Cell ; 31(9): 2206-2222, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239392

RESUMEN

Plant defense often depends on the synthesis and targeted delivery of antimicrobial metabolites at pathogen contact sites. The pleiotropic drug resistance (PDR) transporter PENETRATION3 (PEN3)/PDR8 in Arabidopsis (Arabidopsis thaliana) has been implicated in resistance to a variety of fungal pathogens. However, the antimicrobial metabolite(s) transported by PEN3 for extracellular defense remains unidentified. Here, we report that PEN3 functions redundantly with another PDR transporter (PDR12) to mediate the secretion of camalexin, the major phytoalexin in Arabidopsis. Consistent with this, the pen3 pdr12 double mutants exhibit dramatically enhanced susceptibility to the necrotrophic fungus Botrytis cinerea as well as severe hypersensitivity to exogenous camalexin. PEN3 and PDR12 are transcriptionally activated upon B. cinerea infection, and their expression is regulated by the mitogen-activated protein kinase 3 (MPK3) and MPK6, and their downstream WRKY33 transcription factor. Further genetic analysis indicated that PEN3 and PDR12 contribute to B. cinerea resistance through exporting not only camalexin but also other unidentified metabolite(s) derived from Trp metabolism, suggesting that PEN3 and PDR12 have multiple functions in Arabidopsis immunity via transport of distinct Trp metabolic products.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/metabolismo , Botrytis/efectos de los fármacos , Resistencia a Medicamentos/fisiología , Indoles/farmacología , Proteínas de Transporte de Membrana/metabolismo , Inmunidad de la Planta/inmunología , Tiazoles/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/patogenicidad , Resistencia a Medicamentos/genética , Regulación de la Expresión Génica de las Plantas , Indoles/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Sesquiterpenos/farmacología , Tiazoles/metabolismo , Factores de Transcripción/metabolismo , Fitoalexinas
6.
New Phytol ; 230(3): 1110-1125, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33454976

RESUMEN

Signaling peptides play crucial roles in plant growth, development and defense. We report here that the Arabidopsis thaliana secreted peptide, ROOT MERISTEM GROWTH FACTOR 7 (RGF7), functions as an endogenous elicitor to trigger plant immunity. Expression of the RGF7 precursor-encoding gene (preRGF7) is highly induced in Arabidopsis leaves upon infection by the bacterial pathogen Pseudomonas syringae. The pathogen-responsive preRGF7 expression is regulated by the transcription factor WRKY33 and its upstream mitogen-activated protein kinases MPK3/MPK6 and calcium-dependent protein kinases CPK5/CPK6. In the absence of pathogen attack, chemically induced expression of preRGF7 in transgenic Arabidopsis plants was sufficient to trigger immune responses. Pre-induction of preRGF7 expression in transgenic Arabidopsis also led to enhanced immune responses and increased resistance to P. syringae infection. Biochemical and genetic analyses demonstrated that RGF7 is perceived by the leaf-expressed RGF1 INSENSITIVE (RGI) family receptors RGI4 and RGI5. The SOMATIC EMBRYOGENESIS RECEPTOR KINASES (SERKs) BAK1 and SERK4 are also involved in RGF7 perception via forming RGF7-induced receptor-complexes with RGI4 and RGI5. These results indicate that the pathogen-induced RGF7 peptide, perceived by the RGI4/RGI5-BAK1/SERK4 receptor complexes, acts as a new damage-associated molecular pattern (DAMP) and plays a significant role in Arabidopsis immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Péptidos/metabolismo , Percepción , Inmunidad de la Planta , Pseudomonas syringae/metabolismo , Factores de Transcripción
7.
Proc Natl Acad Sci U S A ; 115(8): E1906-E1915, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432171

RESUMEN

Plants largely rely on plasma membrane (PM)-resident receptor-like kinases (RLKs) to sense extracellular and intracellular stimuli and coordinate cell differentiation, growth, and immunity. Several RLKs have been shown to undergo internalization through the endocytic pathway with a poorly understood mechanism. Here, we show that endocytosis and protein abundance of the Arabidopsis brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), are regulated by plant U-box (PUB) E3 ubiquitin ligase PUB12- and PUB13-mediated ubiquitination. BR perception promotes BRI1 ubiquitination and association with PUB12 and PUB13 through phosphorylation at serine 344 residue. Loss of PUB12 and PUB13 results in reduced BRI1 ubiquitination and internalization accompanied with a prolonged BRI1 PM-residence time, indicating that ubiquitination of BRI1 by PUB12 and PUB13 is a key step in BRI1 endocytosis. Our studies provide a molecular link between BRI1 ubiquitination and internalization and reveal a unique mechanism of E3 ligase-substrate association regulated by phosphorylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Endocitosis , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Proteínas Quinasas/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
J Cell Sci ; 131(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378836

RESUMEN

Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsisthaliana: the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling.


Asunto(s)
Células Vegetales/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Modelos Biológicos , Desarrollo de la Planta , Inmunidad de la Planta
9.
Plant Physiol ; 180(1): 543-558, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782965

RESUMEN

Plants have evolved many receptor-like kinases (RLKs) to sense extrinsic and intrinsic cues. The signaling pathways mediated by multiple Leucine-rich repeat (LRR) RLK (LRR-RLK) receptors require ligand-induced receptor-coreceptor heterodimerization and transphosphorylation with BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1)/SOMATIC EMBRYOGENESIS RECEPTOR KINASES family LRR-RLKs. Here we reveal an additional layer of regulation of BAK1 via a Ca2+-dependent proteolytic cleavage process that is conserved in Arabidopsis (Arabidopsis thaliana), Nicotiana benthamiana, and Saccharomyces cerevisiae The proteolytic cleavage of BAK1 is intrinsically regulated in response to developmental cues and immune stimulation. The surface-exposed Asp (D287) residue of BAK1 is critical for its proteolytic cleavage and plays an essential role in BAK1-regulated plant immunity, growth hormone brassinosteroid-mediated responses, and cell death containment. BAK1D287A mutation impairs BAK1 phosphorylation on its substrate BOTRYTIS-INDUCED KINASE1 (BIK1), and its plasma membrane localization. Intriguingly, it aggravates BAK1 overexpression-triggered cell death independent of BIK1, suggesting that maintaining homeostasis of BAK1 through a proteolytic process is crucial to control plant growth and immunity. Our data reveal that in addition to layered transphosphorylation in the receptor complexes, the proteolytic cleavage is an important regulatory process for the proper functions of the shared coreceptor BAK1 in diverse cellular signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Muerte Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ácido Edético/farmacología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Células Vegetales , Inmunidad de la Planta , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , Pseudomonas syringae/fisiología , Nicotiana/metabolismo
10.
Plant Cell ; 29(12): 3140-3156, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29150546

RESUMEN

Plants have evolved two tiers of immune receptors to detect infections: cell surface-resident pattern recognition receptors (PRRs) that sense microbial signatures and intracellular nucleotide binding domain leucine-rich repeat (NLR) proteins that recognize pathogen effectors. How PRRs and NLRs interconnect and activate the specific and overlapping plant immune responses remains elusive. A genetic screen for components controlling plant immunity identified ANXUR1 (ANX1), a malectin-like domain-containing receptor-like kinase, together with its homolog ANX2, as important negative regulators of both PRR- and NLR-mediated immunity in Arabidopsis thaliana ANX1 constitutively associates with the bacterial flagellin receptor FLAGELLIN-SENSING2 (FLS2) and its coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). Perception of flagellin by FLS2 promotes ANX1 association with BAK1, thereby interfering with FLS2-BAK1 complex formation to attenuate PRR signaling. In addition, ANX1 complexes with the NLR proteins RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2) and RESISTANCE TO P. SYRINGAE PV MACULICOLA1. ANX1 promotes RPS2 degradation and attenuates RPS2-mediated cell death. Surprisingly, a mutation that affects ANX1 function in plant immunity does not disrupt its function in controlling pollen tube growth during fertilization. Our study thus reveals a molecular link between PRR and NLR protein complexes that both associate with cell surface-resident ANX1 and uncovers uncoupled functions of ANX1 and ANX2 during plant immunity and sexual reproduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/genética , Proteínas Quinasas/metabolismo , Alarminas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad/efectos de los fármacos , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Reporteros , Luciferasas/metabolismo , Mutación/genética , Inmunidad de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/genética , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/patogenicidad , Receptores de Reconocimiento de Patrones/metabolismo , Reproducción/efectos de los fármacos , Virulencia/efectos de los fármacos
12.
Plant Cell ; 28(5): 1144-62, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27081184

RESUMEN

Antimicrobial compounds have critical roles in plant immunity; for example, Arabidopsis thaliana and other crucifers deploy phytoalexins and glucosinolate derivatives in defense against pathogens. The pathogen-responsive MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 have essential functions in the induction of camalexin, the major phytoalexin in Arabidopsis. In search of cyanide, a coproduct of ethylene and camalexin biosynthesis, we found that MPK3 and MPK6 also affect the accumulation of extracellular thiocyanate ion derived from the indole glucosinolate (IGS) pathway. Botrytis cinerea infection activates MPK3/MPK6, which promote indole-3-yl-methylglucosinolate (I3G) biosynthesis and its conversion to 4-methoxyindole-3-yl-methylglucosinolate (4MI3G). Gain- and loss-of-function analyses demonstrated that MPK3/MPK6 regulate the expression of MYB51 and MYB122, two key regulators of IGS biosynthesis, as well as CYP81F2 and IGMT1/IGMT2, which encode enzymes in the conversion of I3G to 4MI3G, through ETHYLENE RESPONSE FACTOR6 (ERF6), a substrate of MPK3/MPK6. Under the action of PENETRATION2 (PEN2), an atypical myrosinase, and PEN3, an ATP binding cassette transporter, 4MI3G is converted to extracellular unstable antimicrobial compounds, possibly isothiocyanates that can react with nucleophiles and release the stable thiocyanate ion. Recent studies demonstrated the importance of PEN2/PEN3-dependent IGS derivatives in plant immunity. Here, we report that MPK3/MPK6 and their substrate ERF6 promote the biosynthesis of IGSs and the conversion of I3G to 4MI3G, a target of PEN2/PEN3-dependent chemical defenses in plant immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inmunidad de la Planta/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Inmunidad de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
PLoS Genet ; 10(5): e1004384, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24830428

RESUMEN

Plant male gametogenesis involves complex and dynamic changes in gene expression. At present, little is known about the transcription factors involved in this process and how their activities are regulated. Here, we show that a pollen-specific transcription factor, WRKY34, and its close homolog, WRKY2, are required for male gametogenesis in Arabidopsis thaliana. When overexpressed using LAT52, a strong pollen-specific promoter, epitope-tagged WRKY34 is temporally phosphorylated by MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs, or MPKs), at early stages in pollen development. During pollen maturation, WRKY34 is dephosphorylated and degraded. Native promoter-driven WRKY34-YFP fusion also follows the same expression pattern at the protein level. WRKY34 functions redundantly with WRKY2 in pollen development, germination, and pollen tube growth. Loss of MPK3/MPK6 phosphorylation sites in WRKY34 compromises the function of WRKY34 in vivo. Epistasis interaction analysis confirmed that MPK6 belongs to the same genetic pathway of WRKY34 and WRKY2. Our study demonstrates the importance of temporal post-translational regulation of WRKY transcription factors in the control of developmental phase transitions in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Gametogénesis/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Polen/crecimiento & desarrollo , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , Polen/genética , Regiones Promotoras Genéticas
14.
Plant Physiol ; 169(1): 299-312, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26265775

RESUMEN

Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Resistencia a la Enfermedad/inmunología , Etilenos/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Pseudomonas syringae/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Resistencia a la Enfermedad/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Etilenos/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Pseudomonas syringae/efectos de los fármacos , Ácido Salicílico/farmacología , Transducción de Señal/efectos de los fármacos
15.
Plant Cell ; 25(3): 1126-42, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23524660

RESUMEN

Arabidopsis thaliana MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs or MPKs), play critical roles in plant disease resistance by regulating multiple defense responses. Previously, we characterized the regulation of phytoalexin biosynthesis by Arabidopsis MPK3/MPK6 cascade and its downstream WRKY33 transcription factor. Here, we report another substrate of MPK3/MPK6, ETHYLENE RESPONSE FACTOR6 (ERF6), in regulating Arabidopsis defense gene expression and resistance to the necrotrophic fungal pathogen Botrytis cinerea. Phosphorylation of ERF6 by MPK3/MPK6 in either the gain-of-function transgenic plants or in response to B. cinerea infection increases ERF6 protein stability in vivo. Phospho-mimicking ERF6 is able to constitutively activate defense-related genes, especially those related to fungal resistance, including PDF1.1 and PDF1.2, and confers enhanced resistance to B. cinerea. By contrast, expression of ERF6-EAR, in which ERF6 was fused to the ERF-associated amphiphilic repression (EAR) motif, strongly suppresses B. cinerea-induced defense gene expression, leading to hypersusceptibility of the ERF6-EAR transgenic plants to B. cinerea. Different from ERF1, the regulation and function of ERF6 in defensin gene activation is independent of ethylene. Based on these data, we conclude that ERF6, another substrate of MPK3 and MPK6, plays important roles downstream of the MPK3/MPK6 cascade in regulating plant defense against fungal pathogens.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inmunidad de la Planta/genética , Factores de Transcripción/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Botrytis/patogenicidad , Resistencia a la Enfermedad , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Estabilidad Proteica , Factores de Transcripción/genética , Activación Transcripcional
16.
Plant Cell ; 24(12): 4948-60, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23263767

RESUMEN

Spatiotemporal-specific cell proliferation and cell differentiation are critical to the formation of normal tissues, organs, and organisms. The highly coordinated cell differentiation and proliferation events illustrate the importance of cell-cell communication during growth and development. In Arabidopsis thaliana, ERECTA (ER), a receptor-like protein kinase, plays important roles in promoting localized cell proliferation, which determines inflorescence architecture, organ shape, and size. However, the downstream signaling components remain unidentified. Here, we report a mitogen-activated protein kinase (MAPK; or MPK) cascade that functions downstream of ER in regulating localized cell proliferation. Similar to an er mutant, loss of function of MPK3/MPK6 or their upstream MAPK kinases (MAPKKs; or MKKs), MKK4/MKK5, resulted in shortened pedicels and clustered inflorescences. Epistasis analysis demonstrated that the gain of function of MKK4 and MKK5 transgenes could rescue the loss-of-function er mutant phenotype at both morphological and cellular levels, suggesting that the MPK3/MPK6 cascade functions downstream of the ER receptor. Furthermore, YODA (YDA), a MAPKK kinase, was shown to be upstream of MKK4/MKK5 and downstream of ER in regulating inflorescence architecture based on both gain- and loss-of-function data. Taken together, these results suggest that the YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the ER receptor in regulating localized cell proliferation, which further shapes the morphology of plant organs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferación Celular , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética
17.
PLoS Genet ; 8(6): e1002767, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22761583

RESUMEN

Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Liasas , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/inmunología , Botrytis/patogenicidad , Etilenos/biosíntesis , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Liasas/genética , Liasas/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente , Isoformas de Proteínas , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Plant Cell ; 23(4): 1639-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21498677

RESUMEN

Plant sensing of invading pathogens triggers massive metabolic reprogramming, including the induction of secondary antimicrobial compounds known as phytoalexins. We recently reported that MPK3 and MPK6, two pathogen-responsive mitogen-activated protein kinases, play essential roles in the induction of camalexin, the major phytoalexin in Arabidopsis thaliana. In search of the transcription factors downstream of MPK3/MPK6, we found that WRKY33 is required for MPK3/MPK6-induced camalexin biosynthesis. In wrky33 mutants, both gain-of-function MPK3/MPK6- and pathogen-induced camalexin production are compromised, which is associated with the loss of camalexin biosynthetic gene activation. WRKY33 is a pathogen-inducible transcription factor, whose expression is regulated by the MPK3/MPK6 cascade. Chromatin immunoprecipitation assays reveal that WRKY33 binds to its own promoter in vivo, suggesting a potential positive feedback regulatory loop. Furthermore, WRKY33 is a substrate of MPK3/MPK6. Mutation of MPK3/MPK6 phosphorylation sites in WRKY33 compromises its ability to complement the camalexin induction in the wrky33 mutant. Using a phospho-protein mobility shift assay, we demonstrate that WRKY33 is phosphorylated by MPK3/MPK6 in vivo in response to Botrytis cinerea infection. Based on these data, we conclude that WRKY33 functions downstream of MPK3/MPK6 in reprogramming the expression of camalexin biosynthetic genes, which drives the metabolic flow to camalexin production in Arabidopsis challenged by pathogens.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/microbiología , Botrytis/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sesquiterpenos/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Indoles/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Plantones/metabolismo , Tiazoles/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética , Fitoalexinas
19.
Mol Biol Rep ; 41(1): 477-87, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24307252

RESUMEN

A novel glutamine synthetase (GS) gene DvGS1 showing highest amino acid sequence identity of 78 % with the other homologous GS proteins from green algae, was isolated and characterized from Dunaliella viridis. Phylogenetic analysis revealed that DvGS1 occupied an independent phylogenetic position which was different with the GSs from higher plants, animals and microbes. Functional complement in E. coli mutant confirmed that the DvGS1 encoded functional GS enzyme. Real-time PCR analysis of DvGS1 in D. viridis cells under nitrogen starvation revealed that the mRNA level of DvGS1 was positively up-regulated in 12 h. The DvGS1 levels at the points of 12 and 24 h were separately twofold and fourfold of the level before nitrogen starvation. In order to investigate the potential application of DvGS1 in higher plants, the transgenic study of DvGS1 in Arabidopsis thaliana was carried out. Phenotype identification demonstrated that all three transgenic lines of T3 generation showed obviously enhanced root length (26 %), fresh weight (22-46 % at two concentrations of nitrate supplies), stem length (26 %), leaf size (29 %) and silique number (30 %) compared with the wild-type Arabidopsis. Biochemical analysis confirmed that all three transgenic lines had higher total nitrogen content, soluble protein concentration, total amino acid content and the leaf GS activity than the wild type plants. The free NH4 (+) and NO3 (-) concentration in fresh leaves of three transgenic lines were reduced by 17-26 % and 14-15 % separately (at two concentrations of nitrate supplies) compared with those of the wild types. All the results indicated that over-expression of DvGS1 in Arabidopsis significantly results in the improvement of growth phenotype and the host's nitrogen use efficiency.


Asunto(s)
Arabidopsis/genética , Chlorophyta/enzimología , Glutamato-Amoníaco Ligasa/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Clonación Molecular , Glutamato-Amoníaco Ligasa/biosíntesis , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Fenotipo , Filogenia , Proteínas de Plantas/biosíntesis , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
20.
Plant Commun ; : 101042, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033324

RESUMEN

Plants rely on a sophisticated innate immune system to recognize and defend against invading pathogens. The first line of plant innate immunity called pattern-triggered immunity (PTI) is initiated upon detection of pathogen-associated molecular patterns (PAMPs) by plasma membrane-localized pattern recognition receptors (PRRs) (Jones and Dangl, 2006). A well-characterized PRR is the Arabidopsis receptor-like kinase (RLK) FLS2, which complexes with the co-receptor BAK1 to detect the bacterial PAMP flagellin (or its major epitope flg22) (Zipfel, 2014). Downstream of PAMP-triggered PRR activation, the receptor-like cytoplasmic kinases (RLCKs), such as BIK1 and RIPK, associate with and are activated by PRRs to trigger diverse downstream immune signaling events, including reactive oxygen species (ROS) burst, phosphatidic acid (PA) production, increase of cytoplasmic calcium ([Ca2+]cyt) concentration, and activation of mitogen-activated protein kinase (MAPK) cascades, which collectively lead to the establishment of plant PTI (Bigeard et al., 2015).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA