Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Sep Sci ; 43(12): 2311-2320, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32176835

RESUMEN

In a recent study, anthocyanins, which have a strong free radical-scavenging activity, were examined for their potential to effectively prevent cancer. However, clinical trials are limited by the purity of the anthocyanin. Multiple methods are used to extract and purify anthocyanins. Based on previous work on Solanum nigrum, which is a widely distributed plant, in this study, DM130 macroporous resin, Sephadex LH20, and a C18 column were used to separate cis-trans anthocyanin isomers. These anthocyanins constitute the majority of total S. nigrum anthocyanins. The results showed that this "DM130-LH20-C18 system" can be used to obtain a cinnamic acid-derived cis-trans anthocyanin, petunidin-3-(p-coumaroyl)-rutinoside-5-glucoside, with a purity of 98.5%, for effective quantitation. In order to determine the antioxidant ability of the petunidin-3-(p-coumaroyl)-rutinoside-5-glucoside cis-trans isomers, three ordinary methods were adopted. The maximum antioxidant ability of the cis-trans anthocyanin was dozens of times higher than that of vitamin C.


Asunto(s)
Antocianinas/análisis , Antioxidantes/análisis , Ésteres/análisis , Glucósidos/análisis , Extractos Vegetales/análisis , Solanum nigrum/química , Antocianinas/farmacología , Antioxidantes/farmacología , Benzotiazoles/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Ésteres/farmacología , Frutas/química , Glucósidos/farmacología , Extractos Vegetales/farmacología , Ácidos Sulfónicos/antagonistas & inhibidores
2.
mBio ; 15(2): e0319623, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214535

RESUMEN

Robust chassis are critical to facilitate advances in synthetic biology. This study describes a comprehensive characterization of a new yeast isolate Saccharomyces cerevisiae XP that grows faster than commonly used research and industrial S. cerevisiae strains. The genomic, transcriptomic, and metabolomic analyses suggest that the fast growth rate is, in part, due to the efficient electron transport chain and key growth factor synthesis. A toolbox for genetic manipulation of the yeast was developed; we used it to construct l-lactic acid producers for high lactate production. The development of genetically malleable yeast strains that grow faster than currently used strains may significantly enhance the uses of S. cerevisiae in biotechnology.IMPORTANCEYeast is known as an outstanding starting strain for constructing microbial cell factories. However, its growth rate restricts its application. A yeast strain XP, which grows fast in high concentrations of sugar and acidic environments, is revealed to demonstrate the potential in industrial applications. A toolbox was also built for its genetic manipulation including gene insertion, deletion, and ploidy transformation. The knowledge of its metabolism, which could guide the designing of genetic experiments, was generated with multi-omics analyses. This novel strain along with its toolbox was then tested by constructing an l-lactic acid efficient producer, which is conducive to the development of degradable plastics. This study highlights the remarkable competence of nonconventional yeast for applications in biotechnology.


Asunto(s)
Biotecnología , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo
3.
iScience ; 26(7): 107069, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37426353

RESUMEN

Synthetic biology, relying on Design-Build-Test-Learn (DBTL) cycle, aims to solve medicine, manufacturing, and agriculture problems. However, the DBTL cycle's Learn (L) step lacks predictive power for the behavior of biological systems, resulting from the incompatibility between sparse testing data and chaotic metabolic networks. Herein, we develop a method, "RespectM," based on mass spectrometry imaging, which is able to detect metabolites at a rate of 500 cells per hour with high efficiency. In this study, 4,321 single cell level metabolomics data were acquired, representing metabolic heterogeneity. An optimizable deep neural network was applied to learn from metabolic heterogeneity and a "heterogeneity-powered learning (HPL)" based model was trained as well. By testing the HPL based model, we suggest minimal operations to achieve high triglyceride production for engineering. The HPL strategy could revolutionize rational design and reshape the DBTL cycle.

4.
Talanta ; 264: 124745, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290332

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) is a platform for urine and blood sample analysis. However, the high variability in the urine sample reduced the confidence of metabolite identification. Therefore, pre and post-calibration operations are inevitable to ensure an accurate urine biomarker analysis. In this study, the phenomenon of a higher creatinine concentration variable in ureteropelvic junction obstruction (UPJO) patient urine samples than in healthy people was revealed, indicating the urine biomarker discovery of UPJO patients is not adapted to the creatinine calibrate strategy. Therefore, we proposed a pipeline "OSCA-Finder" to reshape the urine biomarker analysis. First, to ensure a more stable peak shape and total ion chromatography, we applied the product of osmotic pressure and injection volume as a calibration principle and integrated it with an online mixer dilution. Therefore, we obtained the most peaks and identified more metabolites in a urine sample with peak area group CV<30%. A data-enhanced strategy was applied to reduce the overfit while training a neural network binary classifier with an accuracy of 99.9%. Finally, seven accurate urine biomarkers combined with a binary classifier were applied to distinguish UPJO patients from healthy people. The results show that the UPJO diagnostic strategy based on urine osmotic pressure calibration has more potential than ordinary strategies.


Asunto(s)
Aprendizaje Profundo , Enfermedades Renales , Obstrucción Ureteral , Humanos , Creatinina/orina , Metabolómica/métodos , Biomarcadores/orina , Obstrucción Ureteral/cirugía , Obstrucción Ureteral/orina
5.
Food Res Int ; 171: 113071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37330829

RESUMEN

BACKGROUND: Food inspection covers a broad range of topics, including nutrient analysis, food pollutants, food auxiliary materials, additives, and food sensory identification. The foundation of diverse subjects like food science, nutrition, health research, and the food industry, as well as the desired reference for drafting trade and food legislation, makes food inspection highly significant. Because of their high efficiency, sensitivity, and accuracy, instrumental analysis methods have gradually replaced conventional analytical methods as the primary means of food hygiene inspection. SCOPE AND APPROACH: Metabolomics-based analysis technology, such as nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and capillary electrophoresis-mass spectrometry (CE-MS), has become a widely used analytics platform. This research provides a bird's eye view of the application and future of metabolomics-related technologies in food inspection. KEY FINDINGS AND CONCLUSIONS: We have provided a summary of the features and the application range of various metabolomics techniques, the strengths and weaknesses of different metabolomics platforms, and their implementation in specific inspection procedures. These procedures encompass the identification of endogenous metabolites, the detection of exogenous toxins and food additives, analysis of metabolite alterations during processing and storage, as well as the recognition of food adulteration. Despite the widespread utilization and significant contributions of metabolomics-based food inspection technologies, numerous challenges persist as the food industry advances and technology continues to improve. Thus, we anticipate addressing these potential issues in the future.


Asunto(s)
Inspección de Alimentos , Metabolómica , Humanos , Metabolómica/métodos , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas/métodos , Tecnología
6.
iScience ; 26(1): 105774, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36636338

RESUMEN

The host-guest incompatibility between a production host and non-native enzymes has posed an arduous challenge for synthetic biology, particularly between mesophile-derived enzymes and a thermophilic chassis. In the present study, we develop a thermophilic enzyme mining strategy comprising an automated co-evolution-based screening pipeline (http://cem.sjtu.edu.cn), computation-based enzyme characterization, and gene synthesis-based function validation. Using glucosamine-6-phosphate acetyltransferase (GNA1) as an example, we successfully mined four novel GNA1s with excellent thermostabilities and catalytic performances. Calculation and analysis based on AlphaFold2-generated structures were also conducted to uncover the mechanism underlying their excellent properties. Finally, our mined GNA1s were used to enable the high-temperature N-acetylglucosamine (GlcNAc) production with high titers of up to 119.3 g/L, with the aid of systems metabolic engineering and temperature programming. This study demonstrates the effectiveness of the enzyme mining strategy, highlighting the application prospects of mining new enzymes from massive databases and providing an effective solution for tackling host-guest incompatibility.

7.
J Adv Res ; 46: 1-15, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35811061

RESUMEN

INTRODUCTION: Beneficial microorganisms play essential roles in plant growth and induced systemic resistance (ISR) by releasing signaling molecules. Our previous study obtained the crude extract from beneficial endophyte Paecilomyces variotii, termed ZNC (ZhiNengCong), which significantly enhanced plant resistance to pathogen even at 100 ng/ml. However, the immunoreactive components of ZNC remain unclear. Here, we further identified one of the immunoreactive components of ZNC is a nucleoside 2'-deoxyguanosine (2-dG). OBJECTIVES: This paper intends to reveal the molecular mechanism of microbial-derived 2'-deoxyguanosine (2-dG) in activating plant immunity, and the role of plant-derived 2-dG in plant immunity. METHODS: The components of ZNC were separated using a high-performance liquid chromatography (HPLC), and 2-dG is identified using a HPLC-mass spectrometry system (LC-MS). Transcriptome analysis and genetic experiments were used to reveal the immune signaling pathway dependent on 2-dG activation of plant immunity. RESULTS: This study identified 2'-deoxyguanosine (2-dG) as one of the immunoreactive components from ZNC. And 2-dG significantly enhanced plant pathogen resistance even at 10 ng/ml (37.42 nM). Furthermore, 2-dG-induced resistance depends on NPR1, pattern-recognition receptors/coreceptors, ATP receptor P2K1 (DORN1), ethylene signaling but not salicylic acid accumulation. In addition, we identified Arabidopsis VENOSA4 (VEN4) was involved in 2-dG biosynthesis and could convert dGTP to 2-dG, and vne4 mutant plants were more susceptible to pathogens. CONCLUSION: In summary, microbial-derived 2-dG may act as a novel immune signaling molecule involved in plant-microorganism interactions, and VEN4 is 2-dG biosynthesis gene and plays a key role in plant immunity.


Asunto(s)
Arabidopsis , Nucleósidos , Plantas , Arabidopsis/genética , Transducción de Señal , Desoxiguanosina
8.
Nat Commun ; 14(1): 5093, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607912

RESUMEN

Antimicrobial peptides (AMPs) are important mediators of intestinal immune surveillance. However, the regional heterogeneity of AMPs and its regulatory mechanisms remain obscure. Here, we clarified the regional heterogeneity of intestinal AMPs at the single-cell level, and revealed a cross-lineages AMP regulation mechanism that bile acid dependent transcription factors (BATFs), NR1H4, NR1H3 and VDR, regulate AMPs through a ligand-independent manner. Bile acids regulate AMPs by perturbing cell differentiation rather than activating BATFs signaling. Chromatin accessibility determines the potential of BATFs to regulate AMPs at the pre-transcriptional level, thus shaping the regional heterogeneity of AMPs. The BATFs-AMPs axis also participates in the establishment of intestinal antimicrobial barriers of fetuses and the defects of antibacterial ability during Crohn's disease. Overall, BATFs and chromatin accessibility play essential roles in shaping the regional heterogeneity of AMPs at pre- and postnatal stages, as well as in maintenance of antimicrobial immunity during homeostasis and disease.


Asunto(s)
Cromatina , Intestinos , Cromatina/genética , Péptidos Antimicrobianos , Ácidos y Sales Biliares , Factores de Transcripción/genética
9.
Sci Total Environ ; 838(Pt 2): 156047, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35598668

RESUMEN

Dimethyl phthalate (DMP), a low-molecular-weight phthalate ester, exists in ectoparasiticides, plastics, and insect repellants, and has been linked to neurotoxic, reproductive, and endocrine disruptive responses. However, its blood immunotoxic effects and mechanism are still poorly understood. In this study, rats were exposed to gradient concentrations of DMP through intragastric administration to assess the blood immunotoxic effects in the combined assay of biomarker, cytometry, and transcriptomics. DMP treatment altered the redox status of rats, thus causing oxidative damage. Significantly decreased blood cell counts and disordered antibody and cytokine secretion were observed in treated rats, suggesting the suppressed immune defense and destructed inflammatory regulation. Flow cytometry showed that in lymphocytes, especially CD3+CD4+ T cells, the occurrence of apoptosis/necrosis was positively related to DMP exposure level. Transcriptomics revealed an oxidative stress-related mechanism. The overexpression of the Bcl-2 family genes and the activation of the Fas/FasL pathway triggered downstream caspase cascade and caused reactive oxygen species signaling-mediated apoptosis/necrosis. To the best of our knowledge, it was the first report that the exposure to low-molecular-weight phthalate esters potentially triggered blood immunotoxicity. The result and underlying mechanisms can provide an essential basis for understanding phthalate ester toxicity and usage regulation.


Asunto(s)
Ácidos Ftálicos , Animales , Apoptosis , Ésteres , Necrosis , Estrés Oxidativo , Ácidos Ftálicos/toxicidad , Ratas
10.
Talanta ; 221: 121614, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076144

RESUMEN

The cotton plant is an essential crop cultivated globally for its fiber and seeds. In this study, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to study the spatial distribution patterns of lipids in cottonseeds. 448 lipid ions were identified by LC-MS/MS, and 24 of which were precisely visualized by using MALDI-MSI. The lipids, including phosphatidylcholines (PC), phosphatidylethanolamines (PE) and triacylglycerols (TG) showed heterogeneous distribution patterns within the cotyledonary and radicle tissues. Additionally, the roles these lipids played in the metabolic pathways were analyzed, and relationship of the spatial distribution of LPC (lysophosphatidylcholine) and corresponding PC was studied. The unique distribution patterns of these lipid metabolites revealed by MSI can provide new insights into areas relating to the spatial compartmentation of lipid metabolism in plants. We believe that the results of MSI, if combined with transcriptomics and proteomics, may offer significant help in genetic engineering work.


Asunto(s)
Aceite de Semillas de Algodón , Espectrometría de Masas en Tándem , Cromatografía Liquida , Rayos Láser , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Food Chem ; 343: 128472, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139121

RESUMEN

Cadmium is a toxic environmental pollutant that is readily absorbed by rice grains and poses serious threats to human health. The selection and breeding of rice varieties with low cadmium accumulation is one of the most economical and ecological methods to reduce cadmium exposure. In this study, two different indica rice grains under cadmium stress were subjected to mass spectrometry-based metabolomics analysis for the first time. When the cadmium concentration increased in rice grains, most carbohydrates and amino acids were down-regulated, except myoinositol that can prevent cadmium toxicity, which was up-regulated. d-Mannitol and l-cysteine were up-regulated with the increase of cadmium concentration in low-cadmium-accumulating rice. Also, organic acids were activated especially 13-(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoicacid that is related to the alpha-linolenic acid metabolism and jasmonic acid production. The determination of biomarkers and characterization of metabolic pathways might be helpful for the selection of rice varieties with low cadmium accumulation.


Asunto(s)
Cadmio/toxicidad , Oryza/efectos de los fármacos , Oryza/metabolismo , Contaminantes del Suelo/toxicidad , Aminoácidos/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Cadmio/farmacocinética , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Ciclopentanos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Ácidos Linolénicos/metabolismo , Peróxidos Lipídicos/metabolismo , Manitol/metabolismo , Espectrometría de Masas , Metabolómica/métodos , Oryza/química , Oxilipinas/metabolismo , Estructuras de las Plantas/química , Contaminantes del Suelo/farmacocinética
12.
J Agric Food Chem ; 68(24): 6776-6787, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32396374

RESUMEN

Genetic engineering (GE) technology is widely used in plant modification. However, the results of modification may not exactly meet the expectations. Herein, we propose a new multi-omics method for GE plant evaluation based on the optimized use of the metID algorithm. Using this method, we found that flavonoid accumulation was at the expense of the great sacrifice of l-phenylalanine in GE tomatoes for the first time. Meanwhile, the ceramide series of sphingolipid is synthesized de novo from l-serine, and ceramides are the primary source of vesicles coated with flavonoids and secreted from the endoplasmic reticulum. Therefore, the accumulation of the ceramide series of sphingolipid changed the cell component of intracellular organelles. Furthermore, the improvement of the method allows us to identify more metabolites related to dysregulated pathways.


Asunto(s)
Flavonoides/metabolismo , Metabolómica/métodos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Solanum lycopersicum/metabolismo , Factores de Transcripción/genética , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Ingeniería Genética , Metabolismo de los Lípidos , Lípidos/química , Solanum lycopersicum/química , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/metabolismo
13.
Mol Plant Pathol ; 21(5): 636-651, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32077242

RESUMEN

Copper-based antimicrobial compounds are widely and historically used to control plant diseases, such as late blight caused by Phytophthora infestans, which seriously affects the yield and quality of potato. We previously identified that copper ion (Cu2+ ) acts as an extremely sensitive elicitor to induce ethylene (ET)-dependent immunity in Arabidopsis. Here, we found that Cu2+ induces the defence response to P. infestans in potato. Cu2+ suppresses the transcription of the abscisic acid (ABA) biosynthetic genes StABA1 and StNCED1, resulting in decreased ABA content. Treatment with ABA or inhibitor fluridone made potato more susceptible or resistance to late blight, respectively. In addition, potato with knockdown of StABA1 or StNCED1 showed greater resistance to late blight, suggesting that ABA negatively regulates potato resistance to P. infestans. Cu2+ also promotes the rapid biosynthesis of ET. Potato plants treated with 1-aminocyclopropane-1-carboxylate showed enhanced resistance to late blight. Repressed expression of StEIN2 or StEIN3 resulted in enhanced transcription of StABA1 and StNCED1, accumulation of ABA and susceptibility to P. infestans. Consistently, StEIN3 directly binds to the promoter regions of StABA1 and StNCED1. Overall, we concluded that Cu2+ triggers the defence response to potato late blight by activating ET biosynthesis to inhibit the biosynthesis of ABA.


Asunto(s)
Cobre/farmacología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo , Fungicidas Industriales/farmacología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Phytophthora infestans/patogenicidad , Proteínas de Plantas/genética , Piridonas/farmacología , Solanum tuberosum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA