RESUMEN
BACKGROUND: Obesity-associated dysfunctional intestinal permeability contributes to systemic chronic inflammation leading to the development of metabolic diseases. The inflammasomes constitute essential components in the regulation of intestinal homeostasis. We aimed to determine the impact of the inflammasomes in the regulation of gut barrier dysfunction and metabolic inflammation in the context of obesity and type 2 diabetes (T2D). METHODS: Blood samples obtained from 80 volunteers (n = 20 normal weight, n = 21 OB without T2D, n = 39 OB with T2D) and a subgroup of jejunum samples were used in a case-control study. Circulating levels of intestinal damage markers and expression levels of inflammasomes as well as their main effectors (IL-1ß and IL-18) and key inflammation-related genes were analyzed. The impact of inflammation-related factors, different metabolites and Akkermansia muciniphila in the regulation of inflammasomes and intestinal integrity genes was evaluated. The effect of blocking NLRP6 by using siRNA in inflammation was also studied. RESULTS: Increased circulating levels (P < 0.01) of the intestinal damage markers endotoxin, LBP, and zonulin in patients with obesity decreased (P < 0.05) after weight loss. Patients with obesity and T2D exhibited decreased (P < 0.05) jejunum gene expression levels of NLRP6 and its main effector IL18 together with increased (P < 0.05) mRNA levels of inflammatory markers. We further showed that while NLRP6 was primarily localized in goblet cells, NLRP3 was localized in the intestinal epithelial cells. Additionally, decreased (P < 0.05) mRNA levels of Nlrp1, Nlrp3 and Nlrp6 in the small intestinal tract obtained from rats with diet-induced obesity were found. NLRP6 expression was regulated by taurine, parthenolide and A. muciniphila in the human enterocyte cell line CCL-241. Finally, a significant decrease (P < 0.01) in the expression and release of MUC2 after the knockdown of NLRP6 was observed. CONCLUSIONS: The increased levels of intestinal damage markers together with the downregulation of NLRP6 and IL18 in the jejunum in obesity-associated T2D suggest a defective inflammasome sensing, driving to an impaired epithelial intestinal barrier that may regulate the progression of multiple obesity-associated comorbidities.
Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamasomas , Humanos , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Funcion de la Barrera Intestinal , Estudios de Casos y Controles , Inflamación , Obesidad/complicaciones , ARN Mensajero/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Vasopresinas/metabolismoRESUMEN
Dysfunctional adipose tissue (AT) in the context of obesity leads to chronic inflammation together with an altered extracellular matrix (ECM) remodelling, favouring cancer development and progression. Recently, the influence of dermatopontin (DPT) in AT remodelling and inflammation has been proposed. We aimed to evaluate the role of DPT in the development of obesity-associated colon cancer (CC). Samples obtained from 73 subjects [26 lean (LN) and 47 with obesity (OB)] were used in a case-control study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (42 without CC and 31 with CC). In vitro studies in the adenocarcinoma HT-29 cell line were performed to analyse the impact of pro- and anti-inflammatory mediators on the transcript levels of DPT as well as the effect of DPT on ECM remodelling and inflammation. Although obesity increased (p < 0.05) the circulating levels of DPT, its concentrations were significantly decreased (p < 0.05) in patients with CC. Gene expression levels of DPT in the colon from patients with CC were downregulated and, oppositely, a tendency towards increased mRNA levels in visceral AT was found. We further showed that DPT expression levels in HT-29 cells were enhanced (p < 0.05) by inflammatory factors (LPS, TNF-α and TGF-ß), whereas the anti-inflammatory IL-4 decreased (p < 0.05) its expression levels. We also demonstrated that DPT upregulated (p < 0.05) the mRNA of key molecules involved in ECM remodelling (COL1A1, COL5A3, TNC and VEGFA) whereas decorin (DCN) expression was downregulated (p < 0.05) in HT-29 cells. Finally, we revealed that the adipocyte-conditioned medium obtained from volunteers with OB enhanced (p < 0.01) the expression of DPT in HT-29 and Caco-2 cells. The decreased circulating and expression levels of DPT in the colon together with the tendency towards increased levels in visceral AT in patients with CC and its influence on the expression of ECM proteins suggest a possible role of DPT in the OB-associated CC.
Asunto(s)
Neoplasias del Colon , Proteínas de la Matriz Extracelular , Células CACO-2 , Estudios de Casos y Controles , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Inflamación/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , ARN Mensajero/metabolismoRESUMEN
OBJECTIVE: The protein microfibril-associated glycoprotein (MAGP)-1 constitutes a crucial extracellular matrix protein. We aimed to determine its impact on visceral adipose tissue (VAT) remodelling during obesity-associated colon cancer (CC). METHODS: Samples obtained from 79 subjects (29 normoponderal (NP) (17 with CC) and 50 patients with obesity (OB) (19 with CC)) were used in the study. Circulating concentrations of MAGP-1 and its gene expression levels (MFAP2) in VAT were analysed. The impact of inflammation-related factors and adipocyte-conditioned media (ACM) on MFAP2 mRNA levels in colon adenocarcinoma HT-29 cells were further analysed. The effects of MAGP-1 in the expression of genes involved in the extracellular matrix (ECM) remodelling and tumorigenesis in HT-29 cells was also explored. RESULTS: Obesity (p < 0.01) and CC (p < 0.001) significantly decreased MFAP2 gene expression levels in VAT whereas an opposite trend in TGFB1 mRNA levels was observed. Increased mRNA levels of MFAP2 after the stimulation of HT-29 cells with lipopolysaccharide (LPS) (p < 0.01) and interleukin (IL)-4 (p < 0.01) together with a downregulation (p < 0.05) after hypoxia mimicked by CoCl2 treatment was observed. MAGP-1 treatment significantly enhanced the mRNA levels of the ECM-remodelling genes collagen type 6 α3 chain (COL6A3) (p < 0.05), decorin (DCN) (p < 0.01), osteopontin (SPP1) (p < 0.05) and TGFB1 (p < 0.05). Furthermore, MAGP-1 significantly reduced (p < 0.05) the gene expression levels of prostaglandin-endoperoxide synthase 2 (COX2/PTGS2), a key gene controlling cell proliferation, growth and adhesion in CC. Interestingly, a significant decrease (p < 0.01) in the mRNA levels of MFAP2 in HT-29 cells preincubated with ACM from volunteers with obesity compared with control media was observed. Conclusion: The decreased levels of MAGP-1 in patients with obesity and CC together with its capacity to modulate key genes involved in ECM remodelling and tumorigenesis suggest MAGP-1 as a link between AT excess and obesity-associated CC development.
Asunto(s)
Neoplasias del Colon/sangre , Obesidad/sangre , Factores de Empalme de ARN/sangre , Anciano , Carcinogénesis/genética , Neoplasias del Colon/genética , Matriz Extracelular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Masculino , Persona de Mediana Edad , Obesidad/genética , Factores de Empalme de ARN/genéticaAsunto(s)
Investigación Biomédica/normas , COVID-19/prevención & control , Gobierno , Investigadores , Comunicación Académica/normas , Vacunas contra la COVID-19/uso terapéutico , Educación de Pregrado en Medicina , Humanos , Retractación de Publicación como Asunto , SARS-CoV-2 , Estudiantes de Medicina , Tratamiento Farmacológico de COVID-19RESUMEN
Excess adiposity contributes to the development of colon carcinoma (CC). Interleukin (IL)-1ß is a pro-inflammatory cytokine relevant in obesity-associated chronic inflammation and tumorigenic processes. We herein aimed to study how obesity and CC affects the expression of IL1B, and to determine the impact of IL-1ß on the regulation of metabolic inflammation and gut barrier function in the context of obesity and CC. Samples from 71 volunteers were used in a case-control study and a rat model of diet-induced obesity (DIO). Furthermore, bariatric surgery was used to determine the effect of weight loss on the intestinal gene expression levels of Il1b. To evaluate the effect of IL-1ß and obesity in CC, we treated the adenocarcinoma cell line HT-29 with IL-1ß and the adipocyte-conditioned medium (ACM) from patients with obesity. We showed that obesity (P < 0.05) and CC (P < 0.01) upregulated the transcript levels of IL1B in visceral adipose tissue as well as in the colon from patients with CC (P < 0.01). The increased expression of Il1b in the ileum and colon in DIO rats decreased after weight loss achieved by either sleeve gastrectomy or caloric restriction (both P < 0.05). ACM treatment on HT-29 cells upregulated (P < 0.05) the transcripts of IL1B and CCL2, while reducing (P < 0.05) the expression of the anti-inflammatory ADIPOQ and MUC2 genes. Additionally, IL-1ß upregulated (P < 0.01) the expression of CCL2 and TNF whilst downregulating (P < 0.01) the transcript levels of IL4, ADIPOQ and TJP1 in HT-29 cells. We provide evidence of the important role of IL-1ß in obesity-associated CC by directly promoting inflammation.
RESUMEN
[This corrects the article DOI: 10.3389/fimmu.2022.832185.].
RESUMEN
Netrin (NTN)-1, an extracellular matrix protein with a crucial role in inflammation, is dysregulated during obesity (OB) and influences colon cancer (CC) progression. To decipher the mechanisms underlying CC development during obesity, we examined the expression of NTN1 and its receptors in the visceral adipose tissue (VAT) of 74 (25 normal weight (NW)) (16 with CC) and 49 patients with OB (12 with CC). We also evaluated the effect of caloric restriction (CR) on the gene expression levels of Ntn1 and its receptors in the colon from a rat model fed a normal diet. The impact of adipocyte-conditioned media (ACM) from patients with OB and NTN-1 was assessed on the expression levels of neogenin 1(NEO1), deleted in colorectal carcinomas (DCC) and uncoordinated-5 homolog B (UNC5B) in Caco-2 and HT-29 human colorectal cell lines, as well as on Caco-2 cell migration. Increased NTN1 and NEO1 mRNA levels in VAT were due to OB (p < 0.05) and CC (p < 0.001). In addition, an upregulation in the expression levels of DCC and UNC5B in patients with CC (p < 0.01 and p < 0.05, respectively) was observed. Decreased (p < 0.01) Ntn1 levels in the colon from rats submitted to CR were found. In vitro experiments showed that ACM increased DCC (p < 0.05) and NEO1 (p < 0.01) mRNA levels in HT-29 and Caco-2 cell lines, respectively, while UNC5B decreased (p < 0.01) in HT-29. The treatment with NTN-1 increased (p < 0.05) NEO1 mRNA levels in HT-29 cells and DCC (p < 0.05) in both cell lines. Finally, we revealed a potent migratory effect of ACM and NTN-1 on Caco-2 cells. Collectively, these findings point to increased NTN-1 during OB and CC fuelling cancer progression and exerting a strong migratory effect on colon cancer cells.
RESUMEN
Biological sex and aging impact obesity development and type 2 diabetes, changing the secretion of leptin and adiponectin. The balance between these factors has been propounded as a reliable biomarker of adipose tissue dysfunction. Our proposal was to study sexual differences and aging on the adiponectin/leptin (Adpn/Lep) ratio in order to acquire a broader view of the impact of consuming an high-fat diet (HFD) on energy metabolism according to sex and age. Male and female C57BL/6J mice were fed a normal chow diet or an HFD for 12 or 32 weeks (n = 7−10 per group) and evolution of body weight, food intake and metabolic profile were registered. The HFD triggered an increase in body weight (p < 0.001), body weight gain (p < 0.01) and adiposity index (p < 0.01) in both sexes at 32 weeks of age, but female mice fed the HFD exhibited these changes to a significantly lower extent than males. Aged female mice showed an increase (p < 0.01) in the Adpn/Lep ratio, which was negatively correlated with body weight gain, changes in different fat depots and insulin resistance. Females were more metabolically protected from obesity development and its related comorbidities than males regardless of age, making the Adpn/Lep ratio a relevant factor for body composition and glucose metabolism.
Asunto(s)
Diabetes Mellitus Tipo 2 , Leptina , Masculino , Femenino , Ratones , Animales , Leptina/metabolismo , Adiponectina/metabolismo , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Peso Corporal , Aumento de Peso , Dieta Alta en Grasa/efectos adversosRESUMEN
Interleukin (IL)-36 is a recently described cytokine with well-known functions in the regulation of multiple inflammatory diseases. Since no data exists on how this cytokine regulates adipose tissue (AT) homeostasis, we aimed to explore the function of a specific isoform, IL-36γ, an agonist, in human obesity and obesity-associated type 2 diabetes as well as in AT inflammation and fibrosis. Plasma IL-36γ was measured in 91 participants in a case-control study and the effect of weight loss was evaluated in 31 patients with severe obesity undergoing bariatric surgery. Gene expression levels of IL36G and its receptor were analyzed in relevant human metabolic tissues. The effect of inflammatory factors and IL-36γ was determined in vitro in human adipocytes and macrophages. We found, for the first time, that the increased (P<0.05) circulating levels of IL-36γ in patients with obesity decreased (P<0.001) after weight and fat loss achieved by Roux-en-Y gastric bypass and that gene expression levels of IL36G were upregulated in the visceral AT (P<0.05) and in the peripheral blood mononuclear cells (P<0.01) from patients with obesity. We also demonstrated increased (P<0.05) expression levels of Il36g in the epididymal AT from diet-induced obese mice. IL36G was significantly enhanced (P<0.001) by LPS in human adipocytes and monocyte-derived macrophages, while no changes were found after the incubation with anti-inflammatory cytokines. The addition of IL-36γ for 24 h strongly induced (P<0.01) its own expression as well as key inflammatory and chemoattractant factors with no changes in genes associated with fibrosis. Furthermore, adipocyte-conditioned media obtained from patients with obesity increased (P<0.01) the release of IL-36γ and the expression (P<0.05) of cathepsin G (CTSG) in monocyte-derived macrophages. These findings provide, for the first time, evidence about the properties of IL-36γ in the regulation of AT-chronic inflammation, emerging as a link between AT biology and the obesity-associated comorbidities.
Asunto(s)
Diabetes Mellitus Tipo 2 , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Estudios de Casos y Controles , Catepsina G , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Interleucina-1 , Interleucinas/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Ratones , Obesidad/metabolismoRESUMEN
Biomechanical properties of adipose tissue (AT) are closely involved in the development of obesity-associated comorbidities. Bariatric surgery (BS) constitutes the most effective option for a sustained weight loss in addition to improving obesity-associated metabolic diseases including type 2 diabetes (T2D). We aimed to determine the impact of weight loss achieved by BS and caloric restriction (CR) on the biomechanical properties of AT. BS but not CR changed the biomechanical properties of epididymal white AT (EWAT) from a diet-induced obesity rat model, which were associated with metabolic improvements. We found decreased gene expression levels of collagens and Lox together with increased elastin and Mmps mRNA levels in EWAT after BS, which were also associated with the biomechanical properties. Moreover, an increased blood vessel density was observed in EWAT after surgery, confirmed by an upregulation of Acta2 and Antxr1 gene expression levels, which was also correlated with the biomechanical properties. Visceral AT from patients with obesity showed increased stiffness after tensile tests compared to the EWAT from the animal model. This study uncovers new insights into EWAT adaptation after BS with decreased collagen crosslink and synthesis as well as an increased degradation together with enhanced blood vessel density providing, simultaneously, higher stiffness and more ductility. STATEMENT OF SIGNIFICANCE: Biomechanical properties of the adipose tissue (AT) are closely involved in the development of obesity-associated comorbidities. In this study, we show for the first time that biomechanical properties of AT determined by E, UTS and strain at UTS are decreased in obesity, being increased after bariatric surgery by the promotion of ECM remodelling and neovascularization. Moreover, these changes in biomechanical properties are associated with improvements in metabolic homeostasis. Consistently, a better characterization of the plasticity and biomechanical properties of the AT after bariatric surgery opens up a new field for the development of innovative strategies for the reduction of fibrosis and inflammation in AT as well as to better understand obesity and its associated comorbidities.
Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Tejido Adiposo/metabolismo , Animales , Colágeno/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirugía , Matriz Extracelular/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Obesidad/cirugía , Ratas , Receptores de Superficie Celular/metabolismo , Pérdida de PesoRESUMEN
Netrin (NTN)-1 exhibits pro- and anti-inflammatory roles in different settings, playing important roles in the obesity-associated low-grade chronic inflammation. We aimed to determine the impact of NTN-1 on obesity and obesity-associated type 2 diabetes, as well as its role in visceral adipose tissue (VAT) inflammation. A total of 91 subjects were enrolled in this case-control study. Circulating levels of NTN-1 and its receptor neogenin (NEO)-1 were determined before and after weight loss achieved by caloric restriction and bariatric surgery. mRNA levels of NTN1 and NEO1 were assessed in human VAT, liver, and peripheral blood mononuclear cells. In vitro studies in human visceral adipocytes and human monocytic leukemia cells (THP-1)-derived macrophages were performed to analyze the impact of inflammation-related mediators on the gene expression levels of NTN1 and its receptor NEO1 as well as the effect of NTN-1 on inflammation. Increased (p < 0.001) circulating concentrations of NTN-1 in obesity decreased (p < 0.05) after diet-induced weight loss being also associated with a reduction in glucose (p < 0.01) and insulin levels (p < 0.05). Gene expression levels of NTN1 and NEO1 were upregulated (p < 0.05) in the VAT from patients with obesity with the highest expression in the stromovascular fraction cells compared with mature adipocytes (p < 0.01). NTN1 expression levels were enhanced (p < 0.01) under hypoxia and by inflammatory factors in both adipocytes and macrophages. Adipocyte-conditioned media strongly upregulated (p < 0.001) the mRNA levels of NTN1 in macrophages. The treatment of adipocytes with NTN-1 promoted the upregulation (p < 0.05) of pro-inflammatory and chemotactic molecules as well as its receptor NEO1. Collectively, these findings suggest that NTN-1 regulates VAT chronic inflammation and insulin resistance in obesity.
Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Netrina-1 , Obesidad , Humanos , Tejido Adiposo/metabolismo , Estudios de Casos y Controles , Medios de Cultivo Condicionados , Glucosa/metabolismo , Inflamación/metabolismo , Insulinas/metabolismo , Grasa Intraabdominal/metabolismo , Leucocitos Mononucleares/metabolismo , Netrina-1/metabolismo , Obesidad/metabolismo , ARN Mensajero/genética , Pérdida de PesoRESUMEN
BACKGROUND: Inflammasomes maintain tissue homeostasis and their altered regulation in the colon, and the adipose tissue (AT) leads to chronic activation of inflammatory pathways promoting colon cancer (CC) development. We aimed to analyze the potential involvement of inflammasomes in obesity-associated CC. METHODS: Ninety-nine volunteers [61 with obesity (OB) and 38 normoponderal (NP)] further subclassified according to the approved protocol for the diagnosis of CC (58 without CC and 41 with CC) were included in the case-control study. RESULTS: CC (P<0.01) and obesity (P<0.01) were accompanied by increased mRNA levels of NLRP3, NLRP6, ASC, IL1B and NOD2 in VAT. Contrarily, patients with CC exhibited a downregulation of NLRP6 and IL18 in their colon. Additionally, we revealed that the decreased Nlrp1 (P<0.05), Nlrp3 (P<0.01) and Nlrp6 (P<0.01) mRNA levels in the colon from obese rats significantly increase (P<0.05) after caloric restriction. Adipocyte-conditioned media obtained from subjects with obesity reduced (P<0.01) the mRNA of NLRP3 as well as molecules involved in maintaining the intestinal integrity (MUC2, CLDN1 and TJP1) and the anti-inflammatory factors FGF21, KLF4, and IL33 and in HT-29 cells. We also found that the knockdown of NLRP6 in HT-29 cells significantly upregulated (P<0.05) the mRNA of NLRP1 and NLRP3 and inhibited (P<0.05) the expression levels of MUC2. Finally, we showed that the incubation of HT-29 with Akkermansia muciniphila influence (P<0.05) the inflammasome expression profile as well as intestinal integrity-related genes and aberrant inflammation. CONCLUSIONS: These findings provide evidence that the downregulated levels of NLRP6 and IL18 in the colon from patients with CC may be responsible for a reduced intestinal-barrier integrity, triggering local inflammation, which in turn acts on the dysfunctional AT in obesity, increasing the expression of different inflammasome components and flaring up a vicious cycle of uncontrollable inflammatory cascades that favours a pro-tumorigenic microenvironment.