Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Bioessays ; : e2400048, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128131

RESUMEN

The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.

2.
J Cell Sci ; 135(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35343570

RESUMEN

Centrioles are central structural elements of centrosomes and cilia. In human cells, daughter centrioles are assembled adjacent to existing centrioles in S-phase and reach their full functionality with the formation of distal and subdistal appendages one-and-a-half cell cycles later, as they exit their second mitosis. Current models postulate that the centriolar protein centrobin acts as placeholder for distal appendage proteins that must be removed to complete distal appendage formation. Here, we investigated, in non-transformed human epithelial RPE1 cells, the mechanisms controlling centrobin removal and its effect on distal appendage formation. Our data are consistent with a speculative model in which centrobin is removed from older centrioles due to a higher affinity for the newly born daughter centrioles, under the control of the centrosomal kinase PLK1. This removal also depends on the presence of subdistal appendage proteins on the oldest centriole. Removing centrobin, however, is not required for the recruitment of distal appendage proteins, even though this process is equally dependent on PLK1. We conclude that PLK1 kinase regulates centrobin removal and distal appendage formation during centriole maturation via separate pathways.


Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/metabolismo , Humanos , Mitosis
3.
Apoptosis ; 26(5-6): 248-252, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33870441

RESUMEN

Mitosis, under the control of the microtubule-based mitotic spindle, is an attractive target for anti-cancer treatments, as cancer cells undergo frequent and uncontrolled cell divisions. Microtubule targeting agents that disrupt mitosis or single molecule inhibitors of mitotic kinases or microtubule motors kill cancer cells with a high efficacy. These treatments have, nevertheless, severe disadvantages: they also target frequently dividing healthy tissues, such as the haematopoietic system, and they often lose their efficacy due to primary or acquired resistance mechanisms. An alternative target that has emerged in dividing cancer cells is their ability to "cluster" the poles of the mitotic spindle into a bipolar configuration. This mechanism is necessary for the specific survival of cancer cells that tend to form multipolar spindles due to the frequent presence of abnormal centrosome numbers or other spindle defects. Here we discuss the recent development of combinatorial treatments targeting spindle pole clustering that specifically target cancer cells bearing aberrant centrosome numbers and that have the potential to avoid resistance mechanism due their combinatorial nature.


Asunto(s)
Antineoplásicos/uso terapéutico , Muerte Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Polos del Huso/efectos de los fármacos , Antineoplásicos/farmacología , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Combinación de Medicamentos , Sinergismo Farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Mitosis/efectos de los fármacos , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Polos del Huso/metabolismo
4.
Br J Cancer ; 121(2): 139-149, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31235865

RESUMEN

BACKGROUND: Crenolanib is a tyrosine kinase inhibitor targeting PDGFR-α, PDGFR-ß and Fms related tyrosine kinase-3 (FLT3) that is currently evaluated in several clinical trials. Although platelet-derived growth factor receptor (PDGFR) signalling pathway is believed to play an important role in angiogenesis and maintenance of functional vasculature, we here demonstrate a direct angiostatic activity of crenolanib independently of PDGFR signalling. METHODS: The activity of crenolanib on cell viability, migration, sprouting, apoptosis and mitosis was assessed in endothelial cells, tumour cells and fibroblasts. Alterations in cell morphology were determined by immunofluorescence experiments. Flow-cytometry analysis and mRNA expression profiles were used to investigate cell differentiation. In vivo efficacy was investigated in human ovarian carcinoma implanted on the chicken chorioallantoic membrane (CAM). RESULTS: Crenolanib was found to inhibit endothelial cell viability, migration and sprout length, and induced apoptosis independently of PDGFR expression. Treated cells  showed altered actin arrangement and nuclear aberrations. Mitosis was affected at several levels including mitosis entry and centrosome clustering. Crenolanib suppressed human ovarian carcinoma tumour growth and angiogenesis in the CAM model. CONCLUSIONS: The PDGFR/FLT3 inhibitor crenolanib targets angiogenesis and inhibits tumour growth in vivo unrelated to PDGFR expression. Based on our findings, we suggest a broad mechanism of action of crenolanib.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Moduladores de la Mitosis/farmacología , Piperidinas/farmacología , Receptores del Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Pollos , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Receptores del Factor de Crecimiento Derivado de Plaquetas/análisis , Receptores del Factor de Crecimiento Derivado de Plaquetas/fisiología
6.
J Cell Sci ; 128(9): 1732-45, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25795299

RESUMEN

The mitotic spindle drives chromosome movement during mitosis and attaches to chromosomes at dedicated genomic loci named centromeres. Centromeres are epigenetically specified by their histone composition, namely the presence of the histone H3 variant CENP-A, which is regulated during the cell cycle by its dynamic expression and localization. Here, we combined biochemical methods and quantitative imaging approaches to investigate a new function of CUL4-RING E3 ubiquitin ligases (CRL4) in regulating CENP-A dynamics. We found that the core components CUL4 and DDB1 are required for centromeric loading of CENP-A, but do not influence CENP-A maintenance or pre-nucleosomal CENP-A levels. Interestingly, we identified RBBP7 as a substrate-specific CRL4 adaptor required for this process, in addition to its role in binding and stabilizing soluble CENP-A. Our data thus suggest that the CRL4 complex containing RBBP7 (CRL4(RBBP7)) might regulate mitosis by promoting ubiquitin-dependent loading of newly synthesized CENP-A during the G1 phase of the cell cycle.


Asunto(s)
Autoantígenos/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteína 7 de Unión a Retinoblastoma/metabolismo , Proteína A Centromérica , Proteínas de Unión al ADN/metabolismo , Humanos , Mitosis , Unión Proteica , Estabilidad Proteica , Proteína 4 de Unión a Retinoblastoma/metabolismo
7.
Chromosome Res ; 24(1): 19-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26643311

RESUMEN

Centrosomes are complex structures, which are embedded into the opposite poles of the mitotic spindle of most animals, acting as microtubule organizing centres. Surprisingly, in several biological systems, such as flies, chicken, or human cells, centrosomes are not essential for cell division. Nonetheless, they ensure faithful chromosome segregation. Moreover, mis-functioning centrosomes can act in a dominant-negative manner, resulting in erroneous mitotic progression. Here, I review the mechanisms by which centrosomes contribute to proper spindle organization and faithful chromosome segregation under physiological conditions and discuss how errors in centrosome function impair transmission of the genomic material in a pathological setting.


Asunto(s)
Centrosoma/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Humanos/metabolismo , Animales , Cromosomas Humanos/genética , Humanos
8.
Adv Exp Med Biol ; 1002: 93-124, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28600784

RESUMEN

Microtubules are the backbone of all eukaryotic cells cytoskeleton. Their dynamic behaviour constitutes the basis for many biological processes such as cellular motility, cytoplasmic transport and cell division. Some the most effective chemotherapeutics, such as the taxanes, are microtubule interfering drugs. Moreover, many studies suggest that microtubule dynamics are altered in cancer cell divisions and linked to chromosomal instability, aneuploidy and development of drug resistances. The elephant in the room, however, is that despite all these evidences, the exact role of microtubules in malignancies remains elusive, partially due to the lack of clear genetic alterations linking microtubules to cancer. This review will discuss the molecular mechanisms that might alter microtubule dynamics in cancer cells, the pro and cons of the different theories linking these alterations to cancer progression, and the possible directions to address future key questions.


Asunto(s)
Transformación Celular Neoplásica/patología , Microtúbulos/patología , Mitosis , Neoplasias/patología , Aneuploidia , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Inestabilidad Cromosómica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fenotipo
9.
J Cell Sci ; 127(Pt 24): 5149-56, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25335891

RESUMEN

Accurate chromosome segregation during mitosis is temporally and spatially coordinated by fidelity-monitoring checkpoint systems. Deficiencies in these checkpoint systems can lead to chromosome segregation errors and aneuploidy, and promote tumorigenesis. Here, we report that the TRAF-interacting protein (TRAIP), a ubiquitously expressed nucleolar E3 ubiquitin ligase important for cellular proliferation, is localized close to mitotic chromosomes. Its knockdown in HeLa cells by RNA interference (RNAi) decreased the time of early mitosis progression from nuclear envelope breakdown (NEB) to anaphase onset and increased the percentages of chromosome alignment defects in metaphase and lagging chromosomes in anaphase compared with those of control cells. The decrease in progression time was corrected by the expression of wild-type but not a ubiquitin-ligase-deficient form of TRAIP. TRAIP-depleted cells bypassed taxol-induced mitotic arrest and displayed significantly reduced kinetochore levels of MAD2 (also known as MAD2L1) but not of other spindle checkpoint proteins in the presence of nocodazole. These results imply that TRAIP regulates the spindle assembly checkpoint, MAD2 abundance at kinetochores and the accurate cellular distribution of chromosomes. The TRAIP ubiquitin ligase activity is functionally required for the spindle assembly checkpoint control.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Anafase , Cromosomas Humanos/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Mad2/metabolismo
10.
Mol Cell Proteomics ; 13(7): 1724-40, 2014 07.
Artículo en Inglés | MEDLINE | ID: mdl-24732914

RESUMEN

Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr(3) of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin-associated proteins and identified a Haspin protein-protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg(2) and Lys(4) adjacent to the Haspin phosphorylated threonine into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys(4) of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin aided the identification of novel candidate Haspin substrates. In particular, we validated the phosphorylation of Ser(137) of the histone variant macroH2A as a target of Haspin kinase activity. MacroH2A Ser(137) resides in a basic stretch of about 40 amino acids that is required to stabilize extranucleosomal DNA, suggesting that phosphorylation of Ser(137) might regulate the interactions of macroH2A and DNA. Overall, our data suggest that Haspin activity affects the phosphorylation state of proteins involved in gene expression regulation and splicing.


Asunto(s)
Aurora Quinasa B/metabolismo , Regulación de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Mitosis/genética , Mapas de Interacción de Proteínas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina , Transcripción Genética/genética
11.
J Cell Sci ; 125(Pt 4): 906-18, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22399803

RESUMEN

At the onset of mitosis, cells need to break down their nuclear envelope, form a bipolar spindle and attach the chromosomes to microtubules via kinetochores. Previous studies have shown that spindle bipolarization can occur either before or after nuclear envelope breakdown. In the latter case, early kinetochore-microtubule attachments generate pushing forces that accelerate centrosome separation. However, until now, the physiological relevance of this prometaphase kinetochore pushing force was unknown. We investigated the depletion phenotype of the kinetochore protein CENP-L, which we find to be essential for the stability of kinetochore microtubules, for a homogenous poleward microtubule flux rate and for the kinetochore pushing force. Loss of this force in prometaphase not only delays centrosome separation by 5-6 minutes, it also causes massive chromosome alignment and segregation defects due to the formation of syntelic and merotelic kinetochore-microtubule attachments. By contrast, CENP-L depletion has no impact on mitotic progression in cells that have already separated their centrosomes at nuclear envelope breakdown. We propose that the kinetochore pushing force is an essential safety mechanism that favors amphitelic attachments by ensuring that spindle bipolarization occurs before the formation of the majority of kinetochore-microtubule attachments.


Asunto(s)
Centrosoma/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Prometafase , Huso Acromático/metabolismo
12.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39012627

RESUMEN

Centrosomes are the main microtubule-organizing centers in animal cells. Due to the semiconservative nature of centrosome duplication, the two centrosomes differ in age. In asymmetric stem cell divisions, centrosome age can induce an asymmetry in half-spindle lengths. However, whether centrosome age affects the symmetry of the two half-spindles in tissue culture cells thought to divide symmetrically is unknown. Here, we show that in human epithelial and fibroblastic cell lines centrosome age imposes a mild spindle asymmetry that leads to asymmetric cell daughter sizes. At the mechanistic level, we show that this asymmetry depends on a cenexin-bound pool of the mitotic kinase Plk1, which favors the preferential accumulation on old centrosomes of the microtubule nucleation-organizing proteins pericentrin, γ-tubulin, and Cdk5Rap2, and microtubule regulators TPX2 and ch-TOG. Consistently, we find that old centrosomes have a higher microtubule nucleation capacity. We postulate that centrosome age breaks spindle size symmetry via microtubule nucleation even in cells thought to divide symmetrically.


Asunto(s)
Proteínas de Ciclo Celular , Centrosoma , Microtúbulos , Proteínas Serina-Treonina Quinasas , Huso Acromático , Centrosoma/metabolismo , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Huso Acromático/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Microtúbulos/metabolismo , Quinasa Tipo Polo 1 , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Células Epiteliales/metabolismo , Línea Celular , División Celular , Tubulina (Proteína)/metabolismo , Fibroblastos/metabolismo , Antígenos , Proteínas del Tejido Nervioso
13.
Semin Cell Dev Biol ; 22(9): 946-52, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22027615

RESUMEN

For over 70 years, chromosomes have been known to oscillate back-and-forth on the metaphase plate. These movements are directed by kinetochores, the microtubule-attachment complexes on centromeres that regulate the dynamics of bound spindle microtubules. Recent evidence shows that the CCAN (Constitutive Centromere Associated Network) kinetochore network, which directly binds centromeric nucleosomes, plays a crucial role in the control of kinetochore microtubule dynamics. Here we review how this 15-subunit protein network functions within the kinetochore machinery, how it may adapt dynamically both in time and in space to the functional requirements necessary for controlled and faithful chromosome movements during cell division, and how this conserved protein network may have evolved in organisms with different cell division machineries.


Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Cromosómicas no Histona/genética , Humanos , Modelos Estructurales
14.
J Cell Sci ; 124(Pt 22): 3871-83, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22100916

RESUMEN

Accurate chromosome segregation requires the assembly of kinetochores, multiprotein complexes that assemble on the centromere of each sister chromatid. A key step in this process involves binding of the constitutive centromere-associated network (CCAN) to CENP-A, the histone H3 variant that constitutes centromeric nucleosomes. This network is proposed to operate as a persistent structural scaffold for assembly of the outer kinetochore during mitosis. Here, we show by fluorescence resonance energy transfer (FRET) that the N-terminus of CENP-N lies in close proximity to the N-terminus of CENP-A in vivo, consistent with in vitro data showing direct binding of CENP-N to CENP-A. Furthermore, we demonstrate in living cells that CENP-N is bound to kinetochores during S phase and G2, but is largely absent from kinetochores during mitosis and G1. By measuring the dynamics of kinetochore binding, we reveal that CENP-N undergoes rapid exchange in G1 until the middle of S phase when it becomes stably associated with kinetochores. The majority of CENP-N is loaded during S phase and dissociates again during G2. We propose a model in which CENP-N functions as a fidelity factor during centromeric replication and reveal that the CCAN network is considerably more dynamic than previously appreciated.


Asunto(s)
Ciclo Celular , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Línea Celular , Centrómero/genética , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Replicación del ADN , Humanos , Unión Proteica
15.
Nat Commun ; 14(1): 6088, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773176

RESUMEN

A tight synchrony between the DNA and centrosome cycle is essential for genomic integrity. Centriole disengagement, which licenses centrosomes for duplication, occurs normally during mitotic exit. We recently demonstrated that mild DNA replication stress typically seen in cancer cells causes premature centriole disengagement in untransformed mitotic human cells, leading to transient multipolar spindles that favour chromosome missegregation. How mild replication stress accelerates the centrosome cycle at the molecular level remained, however, unclear. Using ultrastructure expansion microscopy, we show that mild replication stress induces premature centriole disengagement already in G2 via the ATR-Chk1 axis of the DNA damage repair pathway. This results in a sub-critical Plk1 kinase activity that primes the pericentriolar matrix for Separase-dependent disassembly but is insufficient for rapid mitotic entry, causing premature centriole disengagement in G2. We postulate that the differential requirement of Plk1 activity for the DNA and centrosome cycles explains how mild replication stress disrupts the synchrony between both processes and contributes to genomic instability.


Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Humanos , Centriolos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Ciclo Celular , Separasa/metabolismo , Inestabilidad Genómica , Mitosis , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
16.
Curr Biol ; 32(13): R744-R746, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820385

RESUMEN

During mitosis, chromosomes must bind spindle microtubules via kinetochores in a stable yet dynamic manner to ensure rapid frictionless movements. A recent study identifies the first complex that specifically reduces friction in the kinetochore-microtubule interface to ensure efficient chromosome segregation.


Asunto(s)
Cinetocoros , Mitosis , Segregación Cromosómica , Fricción , Microtúbulos/metabolismo
17.
Nat Commun ; 13(1): 4704, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948594

RESUMEN

Current models infer that the microtubule-based mitotic spindle is built from GDP-tubulin with small GTP caps at microtubule plus-ends, including those that attach to kinetochores, forming the kinetochore-fibres. Here we reveal that kinetochore-fibres additionally contain a dynamic mixed-nucleotide zone that reaches several microns in length. This zone becomes visible in cells expressing fluorescently labelled end-binding proteins, a known marker for GTP-tubulin, and endogenously-labelled HURP - a protein which we show to preferentially bind the GDP microtubule lattice in vitro and in vivo. We find that in mitotic cells HURP accumulates on the kinetochore-proximal region of depolymerising kinetochore-fibres, whilst avoiding recruitment to nascent polymerising K-fibres, giving rise to a growing "HURP-gap". The absence of end-binding proteins in the HURP-gaps leads us to postulate that they reflect a mixed-nucleotide zone. We generate a minimal quantitative model based on the preferential binding of HURP to GDP-tubulin to show that such a mixed-nucleotide zone is sufficient to recapitulate the observed in vivo dynamics of HURP-gaps.


Asunto(s)
Cinetocoros , Tubulina (Proteína) , Guanosina Trifosfato/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Nucleótidos/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
18.
EMBO J ; 26(24): 5033-47, 2007 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18007590

RESUMEN

Kinetochores are complex protein machines that link chromosomes to spindle microtubules and contain a structural core composed of two conserved protein-protein interaction networks: the well-characterized KMN (KNL1/MIND/NDC80) and the recently identified CENP-A NAC/CAD. Here we show that the CENP-A NAC/CAD subunits can be assigned to one of two different functional classes; depletion of Class I proteins (Mcm21R(CENP-O) and Fta1R(CENP-L)) causes a failure in bipolar spindle assembly. In contrast, depletion of Class II proteins (CENP-H, Chl4R(CENP-N), CENP-I and Sim4R(CENP-K)) prevents binding of Class I proteins and causes chromosome congression defects, but does not perturb spindle formation. Co-depletion of Class I and Class II proteins restores spindle bipolarity, suggesting that Class I proteins regulate or counteract the function of Class II proteins. We also demonstrate that CENP-A NAC/CAD and KMN regulate kinetochore-microtubule attachments independently, even though CENP-A NAC/CAD can modulate NDC80 levels at kinetochores. Based on our results, we propose that the cooperative action of CENP-A NAC/CAD subunits and the KMN network drives efficient chromosome segregation and bipolar spindle assembly during mitosis.


Asunto(s)
Autoantígenos/química , Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Cinetocoros/metabolismo , Subunidades de Proteína/metabolismo , Huso Acromático/metabolismo , Animales , Autoantígenos/genética , Ciclo Celular/fisiología , Polaridad Celular , Proteína A Centromérica , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas del Citoesqueleto , Células HeLa , Humanos , Sustancias Macromoleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades de Proteína/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
19.
Cell Mol Life Sci ; 67(13): 2145-61, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20232224

RESUMEN

Genomic stability requires error-free chromosome segregation during mitosis. Chromosome congression to the spindle equator precedes chromosome segregation in anaphase and is a hallmark of metazoan mitosis. Here we review the current knowledge and concepts on the processes that underlie chromosome congression, including initial attachment to spindle microtubules, biorientation, and movements, from the perspective of the kinetochore.


Asunto(s)
Cromosomas/fisiología , Cinetocoros/metabolismo , Segregación Cromosómica , Humanos , Metafase , Microtúbulos/metabolismo , Mitosis , Huso Acromático/fisiología
20.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34137788

RESUMEN

Mutations in the WDR62 gene cause primary microcephaly, a pathological condition often associated with defective cell division that results in severe brain developmental defects. The precise function and localization of WDR62 within the mitotic spindle is, however, still under debate, as it has been proposed to act either at centrosomes or on the mitotic spindle. Here we explored the cellular functions of WDR62 in human epithelial cell lines using both short-term siRNA protein depletions and long-term CRISPR/Cas9 gene knockouts. We demonstrate that WDR62 localizes at spindle poles, promoting the recruitment of the microtubule-severing enzyme katanin. Depletion or loss of WDR62 stabilizes spindle microtubules due to insufficient microtubule minus-end depolymerization but does not affect plus-end microtubule dynamics. During chromosome segregation, WDR62 and katanin promote efficient poleward microtubule flux and favor the synchronicity of poleward movements in anaphase to prevent lagging chromosomes. We speculate that these lagging chromosomes might be linked to developmental defects in primary microcephaly.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Microtúbulos/enzimología , Proteínas del Tejido Nervioso/metabolismo , Polos del Huso/enzimología , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Polos del Huso/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA