Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(9): 107649, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122011

RESUMEN

Amaryllidaceae alkaloids are a diverse group of alkaloids exclusively reported from the Amaryllidaceae plant family. In planta, their biosynthesis is still not fully characterized; however, a labeling study established 4'-O-methylnorbelladine as the key intermediate compound of the pathway. Previous reports have characterized O-methyltransferases from several Amaryllidaceae species. Nevertheless, the formation of the different O-methylnorbelladine derivatives (3'-O-methylnorbelladine, 4'-O-methylnorbelladine, and 3'4'-O-dimethylnorbelladine), the role, and the preferred substrates of O-methyltransferases are not clearly understood. In this study, we performed the biochemical characterization of an O-methyltransferase candidate from Narcissus papyraceus (NpOMT) in vitro and in vivo, following biotransformation of norbelladine in Nicotiana benthamiana having transient expression of NpOMT. Docking analysis was further used to investigate substrate preferences, as well as key interacting residues of NpOMT. Our study shows that NpOMT methylates norbelladine preferentially at the 4'-OH position in vitro and in planta. Interestingly, NpOMT also catalyzed the synthesis of 3',4'-O-dimethylnorbelladine from norbelladine and 4'-O-methylnorbelladine during in vitro enzymatic assay. Furthermore, we show that NpOMT methylates 3,4-dihydroxybenzylaldehyde and caffeic acid in a nonregiospecific manner to produce meta/para monomethylated products. This study reveals a novel catalytic potential of an Amaryllidaceae O-methyltransferase and its ability to regioselectively methylate norbelladine in the heterologous host N. benthamiana.

2.
Nat Prod Rep ; 41(5): 721-747, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38131392

RESUMEN

Covering: 2017 to 2023 (now)Amaryllidaceae alkaloids (AAs) are a unique class of specialized metabolites containing heterocyclic nitrogen bridging that play a distinct role in higher plants. Irrespective of their diverse structures, most AAs are biosynthesized via intramolecular oxidative coupling. The complex organization of biosynthetic pathways is constantly enlightened by new insights owing to the advancement of natural product chemistry, synthetic organic chemistry, biochemistry, systems and synthetic biology tools and applications. These promote novel compound identification, trace-level metabolite quantification, synthesis, and characterization of enzymes engaged in AA catalysis, enabling the recognition of biosynthetic pathways. A complete understanding of the pathway benefits biotechnological applications in the long run. This review emphasizes the structural diversity of the AA specialized metabolites involved in biogenesis although the process is not entirely defined yet. Moreover, this work underscores the pivotal role of synthetic and enantioselective studies in justifying biosynthetic conclusions. Their prospective candidacy as lead constituents for antiviral drug discovery has also been established. However, a complete understanding of the pathway requires further interdisciplinary efforts in which antiviral studies address the structure-activity relationship. This review presents current knowledge on the topic.


Asunto(s)
Alcaloides de Amaryllidaceae , Antivirales , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/metabolismo , Vías Biosintéticas , Estructura Molecular , Relación Estructura-Actividad
3.
Biochem Cell Biol ; 102(1): 73-84, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703582

RESUMEN

Human muscle-specific RING fingers (MURFs) are members of the tripartite motif (TRIM) family of proteins characterized by their C-terminal subgroup one signature domain. MURFs play a role in sarcomere formation and microtubule dynamics. It was previously established that some TRIMs undergo post-translational modification by small ubiquitin-like modifier (SUMO). In this study, we explored the putative SUMOylation of MURF proteins as well as their interactions with SUMO. MURF proteins (TRIM54, TRIM55, and TRIM63) were not found to be SUMOylated. However, TRIM55 turnover by proteasomal and lysosomal degradation was higher upon overexpression of SUMO-3 but not of SUMO-1. Furthermore, it is predicted that TRIM55 contains two potential SUMO-interacting motifs (SIMs). We found that SIM1- and SIM2-mutated TRIM55 were more stable than the wild-type (WT) protein partly due to decreased degradation. Consistently, SIM-mutated TRIM55 was less polyubiquitinated than the WT protein, despite similar monoubiquitination levels. Using IF microscopy, we observed that SIM motifs influenced TRIM55 subcellular localization. In conclusion, our results suggest that SUMO-3 or SUMO-3-modified proteins modulate the localization, stability, and RING ubiquitin ligase activity of TRIM55.


Asunto(s)
Proteína SUMO-1 , Ubiquitina , Humanos , Ubiquitina/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Exp Bot ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652148

RESUMEN

Amaryllidaceae alkaloid (AAs) biosynthesis has garnered significant attention in recent years, particularly with the commercialisation of galanthamine as a treatment for the symptoms of Alzheimer's disease. A significant amount of research work over the last 8 decades has focused on the understanding of AA biosynthesis, starting from early radiolabelling studies to recent multi-omics analysis with modern biotechnological advancements. Those studies enabled the identification of hundreds of metabolites, the characterisation of biochemical pathway, an understanding of the environmental stimuli, and of the molecular regulation of these pharmaceutically and agriculturally important metabolites. Despite the numerous works there remain significant gaps in understanding their biosynthesis in Amaryllidaceae plants. As such, further research is needed to fully elucidate the metabolic pathway and facilitate their production. This review aims to provide a comprehensive overall summary of the current state of knowledge on AAs biosynthesis, from elicitation of transcription factors expression in the cell nucleus to alkaloid transport in the apoplast, and to highlight the challenges that need to be overcome for further advancement.

5.
Bioorg Med Chem Lett ; 101: 129646, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331225

RESUMEN

Dengue fever is an infectious disease caused by the dengue virus (DENV), an RNA Flavivirus transmitted by the mosquitoes Aedes aegypti and Aedes albopictus widespread in tropical, subtropical and also temperate regions. Symptoms range from a simple cold to a severe, life-threatening haemorrhagic fever. According to the WHO, it affects around 390 million people per year. No antiviral treatment for DENV is available, and the Dengvaxia vaccine is only intended for people over 9 years of age who have contracted dengue one time in the past, and shows serotype-specific effectiveness. There is therefore a crying need to discover new molecules with antiviral power against flaviviruses. The present study was carried out to evaluate the anti-DENV activities and cytotoxicity of triazenes obtained by diazocopulation. Some triazenes were highly cytotoxic (16, and 25) to hepatocarcinoma Huh7 cells, whereas others displayed strong anti-DENV potential. The antiviral activity ranged from EC50 = 7.82 µM to 48.12 µM in cellulo, with a selectivity index (CC50/EC50) greater than 9 for two of the compounds (10, and 20). In conclusion, these new triazenes could serve as a lead to develop and optimize drugs against DENV.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Animales , Humanos , Dengue/tratamiento farmacológico , Antivirales/farmacología
6.
Molecules ; 29(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39339437

RESUMEN

Norbelladine derivatives have garnered attention in recent years due to their diverse biological activities and pivotal role in the biosynthetic pathway of Amaryllidaceae alkaloids. This study reports the synthesis and biological evaluation of four O,N-methylated derivatives of norbelladine. These derivatives were synthesized through a three-step process: forming imine intermediates from benzaldehydes with tyramine, hydrogenating them to secondary amines, and N-methylating these amines. The products were purified and characterized by 1H and 13C NMR spectroscopy. Their biological activities were assessed by evaluating their ability to inhibit Alzheimer's disease-related enzymes acetylcholinesterase and butyrylcholinesterase. Additionally, the cytotoxic activity of the novel derivatives was tested against cancer cell lines derived from hepatocarcinoma (Huh7), adenocarcinoma (HCT-8), and acute myeloid leukemia (THP-1) cells, and their antiviral properties against a human coronavirus (HCoV-OC43), a flavivirus (dengue virus), and a lentivirus (pseudotyped HIV-1). Docking analysis was performed to understand the impact of the N-methylation on their pharmacological relevance. The results indicate that while N-methylation does not significantly affect antiviral activity, it enhances butyrylcholinesterase inhibition for N-methylnorbelladine and 4'-O,N-dimethylnorbelladine. Overall, this work enhances our understanding of norbelladine derivatives, provides new tools for Alzheimer's disease research, and lays the groundwork for future pharmaceutical developments.


Asunto(s)
Antivirales , Butirilcolinesterasa , Simulación del Acoplamiento Molecular , Humanos , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Línea Celular Tumoral , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Metilación , Relación Estructura-Actividad , Estructura Molecular
7.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068947

RESUMEN

The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom Phaeodactylum tricornutum through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). P. tricornutum is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes TKS and OAC into the diatom. P. tricornutum transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6-2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of P. tricornutum with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications.


Asunto(s)
Cannabinoides , Cannabis , Diatomeas , Alucinógenos , Cannabis/genética , Cannabinoides/genética , Diatomeas/genética , Agonistas de Receptores de Cannabinoides , Bioingeniería
8.
Molecules ; 27(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36080382

RESUMEN

Amaryllidaceae alkaloids (AAs) are a structurally diverse family of alkaloids recognized for their many therapeutic properties, such as antiviral, anti-cholinesterase, and anticancer properties. Norbelladine and its derivatives, whose biological properties are poorly studied, are key intermediates required for the biosynthesis of all ~650 reported AAs. To gain insight into their therapeutic potential, we synthesized a series of O-methylated norbelladine-type alkaloids and evaluated their cytotoxic effects on two types of cancer cell lines, their antiviral effects against the dengue virus (DENV) and the human immunodeficiency virus 1 (HIV-1), and their anti-Alzheimer's disease (anti-cholinesterase and -prolyl oligopeptidase) properties. In monocytic leukemia cells, norcraugsodine was highly cytotoxic (CC50 = 27.0 µM), while norbelladine was the most cytotoxic to hepatocarcinoma cells (CC50 = 72.6 µM). HIV-1 infection was impaired only at cytotoxic concentrations of the compounds. The 3,4-dihydroxybenzaldehyde (selectivity index (SI) = 7.2), 3',4'-O-dimethylnorbelladine (SI = 4.8), 4'-O-methylnorbelladine (SI > 4.9), 3'-O-methylnorbelladine (SI > 4.5), and norcraugsodine (SI = 3.2) reduced the number of DENV-infected cells with EC50 values ranging from 24.1 to 44.9 µM. The O-methylation of norcraugsodine abolished its anti-DENV potential. Norbelladine and its O-methylated forms also displayed butyrylcholinesterase-inhibition properties (IC50 values ranging from 26.1 to 91.6 µM). Altogether, the results provided hints of the structure−activity relationship of norbelladine-type alkaloids, which is important knowledge for the development of new inhibitors of DENV and butyrylcholinesterase.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Alcaloides/química , Alcaloides/farmacología , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/química , Antivirales/farmacología , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Humanos , Tiramina/análogos & derivados
9.
Antimicrob Agents Chemother ; 65(9): e0039821, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34152811

RESUMEN

Dengue fever, caused by dengue virus (DENV), is the most prevalent arthropod-borne viral disease and is endemic in many tropical and subtropical parts of the world, with an increasing incidence in temperate regions. The closely related flavivirus Zika virus (ZIKV) can be transmitted vertically in utero and causes congenital Zika syndrome and other birth defects. In adults, ZIKV is associated with Guillain-Barré syndrome. There are no approved antiviral therapies against either virus. Effective antiviral compounds are urgently needed. Amaryllidaceae alkaloids (AAs) are a specific class of nitrogen-containing compounds produced by plants of the Amaryllidaceae family with numerous biological activities. Recently, the AA lycorine was shown to present strong antiflaviviral properties. Previously, we demonstrated that Crinum jagus contained lycorine and several alkaloids of the cherylline, crinine, and galanthamine types with unknown antiviral potential. In this study, we explored their biological activities. We show that C. jagus crude alkaloid extract inhibited DENV infection. Among the purified AAs, cherylline efficiently inhibited both DENV (50% effective concentration [EC50], 8.8 µM) and ZIKV replication (EC50, 20.3 µM) but had no effect on HIV-1 infection. Time-of-drug-addition and -removal experiments identified a postentry step as the one targeted by cherylline. Consistently, using subgenomic replicons and replication-defective genomes, we demonstrate that cherylline specifically hinders the viral RNA synthesis step but not viral translation. In conclusion, AAs are an underestimated source of antiflavivirus compounds, including the effective inhibitor cherylline, which could be optimized for new therapeutic approaches.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Adulto , Alcaloides/farmacología , Alcaloides de Amaryllidaceae/farmacología , Humanos , Isoquinolinas , Replicación Viral , Infección por el Virus Zika/tratamiento farmacológico
10.
Molecules ; 26(23)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34885964

RESUMEN

Amaryllidaceae plants are rich in alkaloids with biological properties. Pancratium trianthum is an Amaryllidaceae species widely used in African folk medicine to treat several diseases such as central nervous system disorders, tumors, and microbial infections, and it is used to heal wounds. The current investigation explored the biological properties of alkaloid extracts from bulbs of P. trianthum collected in the Senegalese flora. Alkaloid extracts were analyzed and identified by chromatography and mass spectrometry. Alkaloid extracts from P. trianthum displayed pleiotropic biological properties. Cytotoxic activity of the extracts was determined on hepatocarcinoma Huh7 cells and on acute monocytic leukemia THP-1 cells, while agar diffusion and microdilution assays were used to evaluate antibacterial activity. Antiviral activity was measured by infection of extract-treated cells with dengue virus (DENVGFP) and human immunodeficiency virus-1 (HIV-1GFP) reporter vectors. Cytotoxicity and viral inhibition were the most striking of P. trianthum's extract activities. Importantly, non-cytotoxic concentrations were highly effective in completely preventing DENVGFP replication and in reducing pseudotyped HIV-1GFP infection levels. Our results show that P. trianthum is a rich source of molecules for the potential discovery of new treatments against various diseases. Herein, we provide scientific evidence to rationalize the traditional uses of P. trianthum for wound treatment as an anti-dermatosis and antiseptic agent.


Asunto(s)
Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacología , Amaryllidaceae/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antivirales/química , Antivirales/farmacología , Línea Celular Tumoral , Dengue/tratamiento farmacológico , Virus del Dengue/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA