RESUMEN
The evolution of genetic sex determination is often accompanied by degradation of the sex-limited chromosome. Male heterogametic systems have evolved convergent, epigenetic mechanisms restoring the resulting imbalance in gene dosage between diploid autosomes (AA) and the hemizygous sex chromosome (X). Female heterogametic systems (AAf Zf, AAm ZZm) tend to only show partial dosage compensation (0.5 < Zf:AAf < 1) and dosage balance (0.5Asunto(s)
Cromatina
, Cuervos
, Animales
, Femenino
, Masculino
, Cromatina/genética
, Cuervos/genética
, Epigénesis Genética
, Metilación
, Compensación de Dosificación (Genética)
, Cromosomas Sexuales
RESUMEN
Determining the molecular signatures of adaptive differentiation is a fundamental component of evolutionary biology. A key challenge is to identify such signatures in wild organisms, particularly between populations of highly mobile species that undergo substantial gene flow. The Canada lynx (Lynx canadensis) is one species where mainland populations appear largely undifferentiated at traditional genetic markers, despite inhabiting diverse environments and displaying phenotypic variation. Here, we used high-throughput sequencing to investigate both neutral genetic structure and epigenetic differentiation across the distributional range of Canada lynx. Newfoundland lynx were identified as the most differentiated population at neutral genetic markers, with demographic modelling suggesting that divergence from the mainland occurred at the end of the last glaciation (20-33 KYA). In contrast, epigenetic structure revealed hidden levels of differentiation across the range coincident with environmental determinants including winter conditions, particularly in the peripheral Newfoundland and Alaskan populations. Several biological pathways related to morphology were differentially methylated between populations, suggesting that epigenetic modifications might explain morphological differences seen between geographically peripheral populations. Our results indicate that epigenetic modifications, specifically DNA methylation, are powerful markers to investigate population differentiation in wild and non-model systems.
Asunto(s)
Epigénesis Genética , Flujo Génico , Genética de Población , Lynx/genética , Alaska , Animales , Metilación de ADN , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Manitoba , Terranova y Labrador , Polimorfismo de Nucleótido Simple , QuebecRESUMEN
Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.