Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 22(2): 546-9, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26493538

RESUMEN

Dispersions of single-walled carbon nanotubes (SWNTs) have been prepared by using the room-temperature ionic liquid [BMIM][BF4 ] (1-butyl-3-methylimidazolium tetrafluoroborate), the triblock copolymer Pluronic L121 [poly(ethylene oxide)5 -poly(propylene oxide)68 -poly(ethylene oxide)5 ] and the non-ionic surfactant Triton X-100 (TX100) in the pure state. The size of the SWNTs aggregates and the dispersion degree in the three viscous systems depend on the sonication time, as highlighted by UV/Vis/NIR spectroscopy and optical microscopy analysis. A nonlinear increase in conductivity can be observed as a function of the SWNTs loading, as suggested by electrochemical impedance spectroscopy. The generation of a three-dimensional network of SWNTs showing a viscoelastic gel-like behavior above a critical percolation concentration has been found at 25 °C in all the investigated systems by oscillatory rheology measurements.

2.
Int J Pharm ; 515(1-2): 254-261, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-27732897

RESUMEN

Lipoxin (LX)A4 is a lipoxygenase-formed arachidonic acid metabolite with potent anti-inflammatory, pro-resolution properties. Its therapeutic efficacy has been largely demonstrated in a variety of cellular, preclinical and clinical models. Among these, periodontal disease, where LXA4 promotes tissue repair, also by modulating functions of human periodontal ligament stem cells (hPDLSCs). As medicated biomembranes may be particularly useful in clinical settings, where local stimulation of tissue repair is needed, we used electrospinning to embed LXA4 in membranes made of poly(ethylene oxide) (PEO) and poly(d,l-lactide) (PDLLA). These membranes were fully characterized by scanning electron microscopy, differential scanning calorimetry and biocompatibility with hPDLSCs. Here, we report that LXA4 is retained in these membranes and that ∼15-20% of the total LXA4 amount added to the reaction can be eluted from the membranes using an aqueous buffered medium. The eluted LXA4 fully retained its capability to stimulate hPDLSC proliferation. A similar effect was obtained by adding directly the LXA4-containing membranes to cells. These results demonstrate for the first time that LXA4 can be incorporated into biomembranes, which may be useful to combat local inflammation and promote tissue repair in selected clinical settings.


Asunto(s)
Lipoxinas/administración & dosificación , Lipoxinas/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inflamación/tratamiento farmacológico , Enfermedades Periodontales/tratamiento farmacológico , Ligamento Periodontal/efectos de los fármacos , Poliésteres/química , Polietilenglicoles/química , Células Madre/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA