Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 628(8006): 162-170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538791

RESUMEN

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Asunto(s)
Inmunidad Adaptativa , Envejecimiento , Linaje de la Célula , Células Madre Hematopoyéticas , Linfocitos , Células Mieloides , Rejuvenecimiento , Animales , Femenino , Masculino , Ratones , Inmunidad Adaptativa/inmunología , Envejecimiento/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Inflamación/inmunología , Inflamación/patología , Linfocitos/citología , Linfocitos/inmunología , Linfopoyesis , Células Mieloides/citología , Células Mieloides/inmunología , Mielopoyesis , Fenotipo , Linfocitos T/citología , Linfocitos T/inmunología , Virus/inmunología
2.
J Surg Res ; 283: 428-437, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36434839

RESUMEN

INTRODUCTION: The use of prosthetic mesh in hernia repair provides a powerful tool to increase repair longevity, decrease recurrence rates, and facilitate complex abdominal wall reconstruction. Overall infection rates with mesh are low, but for those affected there is high morbidity and economic cost. The availability of a practicable small animal model would be advantageous for the preclinical testing of prophylactics, therapeutics, and new biomaterials. To this end, we have developed a novel mouse model for implantation of methicillin-resistant Staphylococcus aureus-infected surgical mesh and provide results from antibiotic and immunotherapeutic testing. MATERIALS AND METHODS: Implantation of surgical mesh between fascial planes of the mouse hind limb was used to approximate hernia repair in humans. Surgical mesh was inoculated with methicillin-resistant Staphylococcus aureus to test the efficacy of antibiotic therapy with daptomycin and/or immunotherapy to induce macrophage phagocytosis using antibody blockade of the CD47 "don't eat me" molecule. Clinical outcomes were assessed by daily ambulation scores of the animals and by enumeration of mesh-associated bacteria at predetermined end points. RESULTS: A single prophylactic treatment with daptomycin at the time of surgery led to improved ambulation scores and undetectable levels of bacteria in seven of eight mice by 21 days postinfection. Anti-CD47, an activator of macrophage phagocytosis, was ineffective when administered alone or in combination with daptomycin treatment. Ten days of daily antibiotic therapy begun 3 days after infection was ineffective at clearing infection. CONCLUSIONS: This fast and simple model allows rapid in vivo testing of novel antimicrobials and immunomodulators to treat surgical implant infections.


Asunto(s)
Daptomicina , Hernia Ventral , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Mallas Quirúrgicas , Infecciones Estafilocócicas/microbiología , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Herniorrafia/métodos , Infección de la Herida Quirúrgica/prevención & control , Hernia Ventral/cirugía
3.
J Immunol ; 198(9): 3526-3535, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28330900

RESUMEN

The recent association between Zika virus (ZIKV) and neurologic complications, including Guillain-Barré syndrome in adults and CNS abnormalities in fetuses, highlights the importance in understanding the immunological mechanisms controlling this emerging infection. Studies have indicated that ZIKV evades the human type I IFN response, suggesting a role for the adaptive immune response in resolving infection. However, the inability of ZIKV to antagonize the mouse IFN response renders the virus highly susceptible to circulating IFN in murine models. Thus, as we show in this article, although wild-type C57BL/6 mice mount cell-mediated and humoral adaptive immune responses to ZIKV, these responses were not required to prevent disease. However, when the type I IFN response of mice was suppressed, then the adaptive immune responses became critical. For example, when type I IFN signaling was blocked by Abs in Rag1-/- mice, the mice showed dramatic weight loss and ZIKV infection in the brain and testes. This phenotype was not observed in Ig-treated Rag1-/- mice or wild-type mice treated with anti-type I IFNR alone. Furthermore, we found that the CD8+ T cell responses of pregnant mice to ZIKV infection were diminished compared with nonpregnant mice. It is possible that diminished cell-mediated immunity during pregnancy could increase virus spread to the fetus. These results demonstrate an important role for the adaptive immune response in the control of ZIKV infection and imply that vaccination may prevent ZIKV-related disease, particularly when the type I IFN response is suppressed as it is in humans.


Asunto(s)
Inmunidad Adaptativa , Encéfalo/virología , Linfocitos T CD8-positivos/virología , Complicaciones Infecciosas del Embarazo/inmunología , Testículo/virología , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Animales , Anticuerpos Bloqueadores/administración & dosificación , Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio/genética , Humanos , Evasión Inmune , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo/inmunología , Testículo/inmunología , Infección por el Virus Zika/epidemiología
4.
J Virol ; 90(13): 6001-6013, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27099312

RESUMEN

UNLABELLED: Although all 12 subtypes of human interferon alpha (IFN-α) bind the same receptor, recent results have demonstrated that they elicit unique host responses and display distinct efficacies in the control of different viral infections. The IFN-α2 subtype is currently in HIV-1 clinical trials, but it has not consistently reduced viral loads in HIV-1 patients and is not the most effective subtype against HIV-1 in vitro We now demonstrate in humanized mice that, when delivered at the same high clinical dose, the human IFN-α14 subtype has very potent anti-HIV-1 activity whereas IFN-α2 does not. In both postexposure prophylaxis and treatment of acute infections, IFN-α14, but not IFN-α2, significantly suppressed HIV-1 replication and proviral loads. Furthermore, HIV-1-induced immune hyperactivation, which is a prognosticator of disease progression, was reduced by IFN-α14 but not IFN-α2. Whereas ineffective IFN-α2 therapy was associated with CD8(+) T cell activation, successful IFN-α14 therapy was associated with increased intrinsic and innate immunity, including significantly higher induction of tetherin and MX2, increased APOBEC3G signature mutations in HIV-1 proviral DNA, and higher frequencies of TRAIL(+) NK cells. These results identify IFN-α14 as a potent new therapeutic that operates via mechanisms distinct from those of antiretroviral drugs. The ability of IFN-α14 to reduce both viremia and proviral loads in vivo suggests that it has strong potential as a component of a cure strategy for HIV-1 infections. The broad implication of these results is that the antiviral efficacy of each individual IFN-α subtype should be evaluated against the specific virus being treated. IMPORTANCE: The naturally occurring antiviral protein IFN-α2 is used to treat hepatitis viruses but has proven rather ineffective against HIV in comparison to triple therapy with the antiretroviral (ARV) drugs. Although ARVs suppress the replication of HIV, they fail to completely clear infections. Since IFN-α acts by different mechanism than ARVs and has been shown to reduce HIV proviral loads, clinical trials are under way to test whether IFN-α2 combined with ARVs might eradicate HIV-1 infections. IFN-α is actually a family of 12 distinct proteins, and each IFN-α subtype has different efficacies toward different viruses. Here, we use mice that contain a human immune system, so they can be infected with HIV. With this model, we demonstrate that while IFN-α2 is only weakly effective against HIV, IFN-α14 is extremely potent. This discovery identifies IFN-α14 as a more powerful IFN-α subtype for use in combination therapy trials aimed toward an HIV cure.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Interferón-alfa/uso terapéutico , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Desaminasa APOBEC-3G/genética , Animales , Antígenos CD/genética , Linfocitos T CD8-positivos/inmunología , Progresión de la Enfermedad , Proteínas Ligadas a GPI/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Inmunidad Innata , Interferón-alfa/clasificación , Interferón-alfa/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Ratones , Ratones Transgénicos , Proteínas de Resistencia a Mixovirus/genética , Viremia/tratamiento farmacológico
5.
J Immunol ; 193(6): 2952-60, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25098294

RESUMEN

Vß5(+) regulatory T cells (Tregs), which are specific for a mouse endogenous retroviral superantigen, become activated and proliferate in response to Friend virus (FV) infection. We previously reported that FV-induced expansion of this Treg subset was dependent on CD8(+) T cells and TNF-α, but independent of IL-2. We now show that the inflammatory milieu associated with FV infection is not necessary for induction of Vß5(+) Treg expansion. Rather, it is the presence of activated CD8(+) T cells that is critical for their expansion. The data indicate that the mechanism involves signaling between the membrane-bound form of TNF-α on activated CD8(+) T cells and TNFR2 on Tregs. CD8(+) T cells expressing membrane-bound TNF-α but no soluble TNF-α remained competent to induce strong Vß5(+) Treg expansion in vivo. In addition, Vß5(+) Tregs expressing only TNFR2 but no TNFR1 were still responsive to expansion. Finally, treatment of naive mice with soluble TNF-α did not induce Vß5(+) Treg expansion, but treatment with a TNFR2-specific agonist did. These results reveal a new mechanism of intercellular communication between activated CD8(+) T cell effectors and Tregs that results in the activation and expansion of a Treg subset that subsequently suppresses CD8(+) T cell functions.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/biosíntesis , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Proteínas Portadoras/genética , Femenino , Virus de la Leucemia Murina de Friend/inmunología , Leucemia Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Tipo I de Factores de Necrosis Tumoral , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Infecciones por Retroviridae/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Infecciones Tumorales por Virus/inmunología
6.
J Immunol ; 193(1): 306-16, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24872193

RESUMEN

Tetherin/BST-2 is a host restriction factor that could directly inhibit retroviral particle release by tethering nascent virions to the plasma membrane. However, the immunological impact of Tetherin during retrovirus infection remains unknown. We now show that Tetherin influences antiretroviral cell-mediated immune responses. In contrast to the direct antiviral effects of Tetherin, which are dependent on cell surface expression, the immunomodulatory effects are linked to the endocytosis of the molecule. Mice encoding endocytosis-competent C57BL/6 Tetherin exhibited lower viremia and pathology at 7 d postinfection with Friend retrovirus (FV) compared with mice encoding endocytosis-defective NZW/LacJ Tetherin. Notably, antiretroviral protection correlated with stronger NK cell responses. In addition, Friend retrovirus infection levels were significantly lower in wild-type C57BL/6 mice than in Tetherin knockout mice at 2 wk postinfection, and antiretroviral protection correlated with stronger NK cell and virus-specific CD8+ T cell responses. The results demonstrate that Tetherin acts as a modulator of the cell-mediated immune response against retrovirus infection in vivo.


Asunto(s)
Antígenos CD/inmunología , Linfocitos T CD8-positivos/inmunología , Virus de la Leucemia Murina de Friend/inmunología , Inmunidad Celular , Células Asesinas Naturales/inmunología , Glicoproteínas de Membrana/inmunología , Infecciones por Retroviridae/inmunología , Infecciones Tumorales por Virus/inmunología , Animales , Antígenos CD/genética , Linfocitos T CD8-positivos/patología , Virus de la Leucemia Murina de Friend/genética , Células Asesinas Naturales/patología , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/patología , Factores de Tiempo , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/patología , Viremia/genética , Viremia/inmunología , Viremia/patología
7.
Blood ; 122(25): 4013-20, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24021673

RESUMEN

The use of C57BL/6 Rag2(-/-)γc(-/-) mice as recipients for xenotransplantation with human immune systems (humanization) has been problematic because C57BL/6 SIRPα does not recognize human CD47, and such recognition is required to suppress macrophage-mediated phagocytosis of transplanted human hematopoietic stem cells (HSCs). We show that genetic inactivation of CD47 on the C57BL/6 Rag2(-/-)γc(-/-) background negates the requirement for CD47-signal recognition protein α (SIRPα) signaling and induces tolerance to transplanted human HSCs. These triple-knockout, bone marrow, liver, thymus (TKO-BLT) humanized mice develop organized lymphoid tissues including mesenteric lymph nodes, splenic follicles and gut-associated lymphoid tissue that demonstrate high levels of multilineage hematopoiesis. Importantly, these mice have an intact complement system and showed no signs of graft-versus-host disease (GVHD) out to 29 weeks after transplantation. Sustained, high-level HIV-1 infection was observed via either intrarectal or intraperitoneal inoculation. TKO-BLT mice exhibited hallmarks of human HIV infection including CD4(+) T-cell depletion, immune activation, and development of HIV-specific B- and T-cell responses. The lack of GVHD makes the TKO-BLT mouse a significantly improved model for long-term studies of pathogenesis, immune responses, therapeutics, and vaccines to human pathogens.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Enfermedad Injerto contra Huésped , Infecciones por VIH/inmunología , VIH-1/inmunología , Trasplante de Células Madre Hematopoyéticas , Inmunidad Celular , Tejido Linfoide/inmunología , Animales , Linfocitos B/patología , Linfocitos T CD4-Positivos/patología , Modelos Animales de Enfermedad , Infecciones por VIH/genética , Infecciones por VIH/patología , Xenoinjertos , Humanos , Tejido Linfoide/patología , Tejido Linfoide/virología , Ratones , Ratones Noqueados
8.
J Immunol ; 190(11): 5485-95, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23645880

RESUMEN

Friend virus infection of mice induces the expansion and activation of regulatory T cells (Tregs) that dampen acute immune responses and promote the establishment and maintenance of chronic infection. Adoptive transfer experiments and the expression of neuropilin-1 indicate that these cells are predominantly natural Tregs rather than virus-specific conventional CD4(+) T cells that converted into induced Tregs. Analysis of Treg TCR Vß chain usage revealed a broadly distributed polyclonal response with a high proportionate expansion of the Vß5(+) Treg subset, which is known to be responsive to endogenous retrovirus-encoded superantigens. In contrast to the major population of Tregs, the Vß5(+) subset expressed markers of terminally differentiated effector cells, and their expansion was associated with the level of the antiviral CD8(+) T cell response rather than the level of Friend virus infection. Surprisingly, the expansion and accumulation of the Vß5(+) Tregs was IL-2 independent but dependent on TNF-α. These experiments reveal a subset-specific Treg induction by a new pathway.


Asunto(s)
Virus de la Leucemia Murina de Friend/inmunología , Interleucina-2/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Infecciones por Retroviridae/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Inmunofenotipificación , Interleucina-2/metabolismo , Ratones , Fenotipo , Linfocitos T Reguladores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Infecciones Tumorales por Virus/inmunología
9.
J Immunol ; 189(5): 2521-9, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22821964

RESUMEN

The immune system is tasked with defending against a myriad of microbial infections, and its response to a given infectious microbe may be strongly influenced by coinfection with another microbe. It was shown that infection of mice with lactate dehydrogenase-elevating virus (LDV) impairs early adaptive immune responses to Friend virus (FV) coinfection. To investigate the mechanism of this impairment, we examined LDV-induced innate immune responses and found LDV-specific induction of IFN-α and IFN-γ. LDV-induced IFN-α had little effect on FV infection or immune responses, but unexpectedly, LDV-induced IFN-γ production dampened Th1 adaptive immune responses and enhanced FV infection. Two distinct effects were identified. First, LDV-induced IFN-γ signaling indirectly modulated FV-specific CD8+ T cell responses. Second, intrinsic IFN-γ signaling in B cells promoted polyclonal B cell activation and enhanced early FV infection, despite promotion of germinal center formation and neutralizing Ab production. Results from this model reveal that IFN-γ production can have detrimental effects on early adaptive immune responses and virus control.


Asunto(s)
Inmunidad Adaptativa , Regulación hacia Abajo/inmunología , Interferón gamma/fisiología , Virus de la Leucemia Murina/inmunología , Infecciones por Retroviridae/inmunología , Inmunidad Adaptativa/genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Virus de la Leucemia Murina de Friend/inmunología , Virus de la Leucemia Murina de Friend/patogenicidad , Interferón gamma/deficiencia , Interferón gamma/genética , Virus Elevador de Lactato Deshidrogenasa/inmunología , Virus Elevador de Lactato Deshidrogenasa/patogenicidad , Virus de la Leucemia Murina/patogenicidad , Leucemia Experimental/genética , Leucemia Experimental/inmunología , Leucemia Experimental/virología , Ratones , Ratones Congénicos , Ratones Endogámicos A , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/patología , Virus Formadores de Foco en el Bazo/inmunología , Virus Formadores de Foco en el Bazo/patogenicidad , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/virología
10.
mBio ; 13(5): e0189122, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36073812

RESUMEN

HIV infects long-lived CD4 memory T cells, establishing a latent viral reservoir that necessitates lifelong antiretroviral therapy (ART). How this reservoir is formed so quickly after infection remains unclear. We now show the innate inflammatory response to HIV infection results in CCL2 chemokine release, leading to recruitment of cells expressing the CCR2 receptor, including a subset of central memory CD4 T cells. Supporting a role for the CCL2/CCR2 axis in rapid reservoir formation, we find (i) treatment of humanized mice with anti-CCL2 antibodies during early HIV infection decreases reservoir seeding and preserves CCR2/5+ cells and (ii) CCR2/5+ cells from the blood of HIV-infected individuals on long-term ART contain significantly more integrated provirus than CCR2/5-negative memory or naive cells. Together, these studies support a model where the host's innate inflammatory response to HIV infection, including CCL2 production, leads to the recruitment of CCR2/5+ central memory CD4 T cells to zones of virus-associated inflammation, likely contributing to rapid formation of the latent HIV reservoir. IMPORTANCE There are currently over 35 million people living with HIV worldwide, and we still have no vaccine or scalable cure. One of the difficulties with HIV is its ability to rapidly establish a viral reservoir in lymphoid tissues that allows it to elude antivirals and the immune system. Thus, it is important to understand how HIV accomplishes this so we can develop preventive strategies. Our current results show that an early inflammatory response to HIV infection includes production of the chemokine CCL2, which recruits a unique subset of CCR2/5+ CD4+ T cells that become infected and form a significant reservoir for latent infection. Furthermore, we show that blockade of CCL2 in humanized mice significantly reduces persistent HIV infection. This information is relevant to the development of therapeutics to prevent and/or treat chronic HIV infections.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Ratones , Latencia del Virus/fisiología , VIH-1/fisiología , Quimiocina CCL2 , Receptores CCR2 , Replicación Viral , Linfocitos T CD4-Positivos , Antivirales/uso terapéutico , Quimiocinas , Inflamación
11.
J Immunol ; 183(3): 1636-43, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19587016

RESUMEN

Infection of mice with Friend virus induces the activation of CD4(+) regulatory T cells (Tregs) that suppress virus-specific CD8(+) T cells. This suppression leads to incomplete virus clearance and the establishment of virus persistence. We now show that Treg-mediated suppression of CD8(+) T cells is tissue specific, occurring in the spleen but not the liver. Regardless of infection status, there was a 5-fold lower proportion of Tregs in the liver than in the spleen, much lower absolute cell numbers, and the relatively few Tregs present expressed less CD25. Results indicated that reduced expression of CD25 on liver Tregs was due to microenvironmental factors including low levels of IL-2 production by CD4(+) Th cells in that tissue. Low CD25 expression on liver Tregs did not impair their ability to suppress CD8(+) T cells in vitro. Correlating with the decreased proportion of Tregs in the liver was a significantly increased proportion of virus-specific CD8(+) T cells compared with the spleen. The virus-specific CD8(+) T cells from the liver did not appear suppressed given that they produced both IFN-gamma and granzyme B, and they also showed evidence of recent cytolytic activity (CD107a(+)). The functional phenotype of the virus-specific CD8(+) T cells correlated with a 10-fold reduction of chronic Friend virus levels in the liver compared with the spleen. Thus, suppression of CD8(+) T cells by virus-induced Tregs occurs in a tissue-specific manner and correlates with profound effects on localized levels of chronic infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Retroviridae/inmunología , Bazo/inmunología , Linfocitos T Reguladores/inmunología , Animales , Enfermedad Crónica , Virus de la Leucemia Murina de Friend , Leucemia Experimental , Ratones , Especificidad de Órganos , Bazo/virología , Infecciones Tumorales por Virus , Carga Viral
12.
mBio ; 12(4): e0150321, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34311582

RESUMEN

Severe coronavirus disease 2019 (COVID-19) has been associated with T cell lymphopenia, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we studied rhesus macaques that were depleted of either CD4+, CD8+, or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to that in controls. The T cell-depleted groups developed virus-neutralizing antibody responses and class switched to IgG. When reinfected 6 weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads, and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ nor CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory, or protection from a second infection. IMPORTANCE Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it. We studied rhesus macaques, which develop only mild COVID-19, similar to most humans. Experimental depletion of T cells slightly prolonged their clearance of virus, but there was no increase in disease severity. Furthermore, they were able to develop protection from a second infection and produced antibodies capable of neutralizing the virus. They also developed immunological memory, which allows a much stronger and more rapid response upon a second infection. These results suggest that T cells are not critical for recovery from acute SARS-CoV-2 infections in this model and point toward B cell responses and antibodies as the essential mediators of protection from re-exposure.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/patología , Memoria Inmunológica/inmunología , Linfopenia/inmunología , SARS-CoV-2/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Femenino , Depleción Linfocítica/métodos , Macaca mulatta/inmunología , Masculino
13.
bioRxiv ; 2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33821272

RESUMEN

Severe COVID-19 has been associated with T cell lymphopenia 1,2, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from SARS-CoV-2 infections we studied rhesus macaques that were depleted of either CD4+, CD8+ or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to controls. The T cell-depleted groups developed virus-neutralizing antibody responses and also class-switched to IgG. When re-infected six weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ or CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory or protection from a second infection.

14.
J Virol ; 83(24): 13037-41, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812147

RESUMEN

Murine norovirus (MNV) is a highly infectious but generally nonpathogenic agent that is commonly found in research mouse colonies in both North America and Europe. In the present study, the effects of acute and chronic infections with MNV on immune responses and recovery from concurrent Friend virus (FV) infections were investigated. No significant differences in T-cell or NK-cell responses, FV-neutralizing antibody responses, or long-term recovery from FV infection were observed. We conclude that concurrent MNV infections had no major impacts on FV infections.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Leucemia Experimental/inmunología , Norovirus , Infecciones por Retroviridae/inmunología , Infecciones Tumorales por Virus/inmunología , Enfermedad Aguda , Animales , Anticuerpos Antivirales/sangre , Enfermedad Crónica , Virus de la Leucemia Murina de Friend , Ratones
15.
mBio ; 11(3)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576678

RESUMEN

It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 "don't eat me" signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents.IMPORTANCE Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile.


Asunto(s)
Betacoronavirus/inmunología , Antígeno CD47/metabolismo , Inmunomodulación/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Células A549 , Inmunidad Adaptativa/inmunología , Animales , Antígeno CD47/genética , Línea Celular Tumoral , Citocinas/inmunología , Femenino , Humanos , Inmunidad Innata/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/inmunología , SARS-CoV-2 , Regulación hacia Arriba/inmunología
16.
J Virol ; 82(1): 408-18, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17959678

RESUMEN

Friend virus (FV) and lactate dehydrogenase-elevating virus (LDV) are endemic mouse viruses that can cause long-term chronic infections in mice. We found that numerous mouse-passaged FV isolates also contained LDV and that coinfection with LDV delayed FV-specific CD8(+) T-cell responses during acute infection. While LDV did not alter the type of acute pathology induced by FV, which was severe splenomegaly caused by erythroproliferation, the immunosuppression mediated by LDV increased both the severity and the duration of FV infection. Compared to mice infected with FV alone, those coinfected with both FV and LDV had delayed CD8(+) T-cell responses, as measured by FV-specific tetramers. This delayed response accounted for the prolonged and exacerbated acute phase of FV infection. Suppression of FV-specific CD8(+) T-cell responses occurred not only in mice infected concomitantly with LDV but also in mice chronically infected with LDV 8 weeks prior to infection with FV. The LDV-induced suppression was not mediated by T regulatory cells, and no inhibition of the CD4(+) T-cell or antibody responses was observed. Considering that most human adults are carriers of chronically infectious viruses at the time of new virus insults and that coinfections with viruses such as human immunodeficiency virus and hepatitis C virus are currently epidemic, it is of great interest to determine how infection with one virus may impact host responses to a second infection. Coinfection of mice with LDV and FV provides a well-defined, natural host model for such studies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus de la Leucemia Murina de Friend/inmunología , Tolerancia Inmunológica , Virus Elevador de Lactato Deshidrogenasa/inmunología , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Femenino , Leucemia Eritroblástica Aguda/virología , Leucemia Experimental/virología , Ratones , Ratones Endogámicos C57BL , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/patología , Esplenomegalia/virología , Linfocitos T Reguladores/inmunología , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/patología
17.
Sci Rep ; 9(1): 18089, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792317

RESUMEN

Combination antiretroviral therapy (cART) prevents HIV-1 replication but does not eliminate the latent reservoir and cure the infection. Type I interferons (IFN) mediate antiviral effects through different mechanisms than cART. We previously showed that IFNα14 is the most potent IFNα subtype against HIV-1 and that it can significantly reduce the HIV-1 proviral reservoir. This study sought to determine whether combining cART with IFNα14 therapy would produce greater reductions in HIV-1 viral and proviral loads than ART alone. Immunodeficient Rag2-/-γc-/-CD47-/- C57BL/6 mice were humanized by the BLT method, infected with HIV-1JR-CSF and the in vivo efficacy of cART was compared with combined cART/IFNα14 therapy. Infection was allowed to establish for 6 weeks prior to 4 weeks of treatment with oral cART either with or without IFNα14. Plasma viral RNA and splenic CD4+ T cell viral DNA levels were measured immediately after treatment and after 2 weeks of therapy interruption. Augmentation of cART with IFNα14 resulted in significantly enhanced suppression of HIV-1 plasma viremia. However, no significant reduction in total viral DNA was detectable. Furthermore, virus rebounded after treatment interruption to similar levels in both groups. Thus, augmentation of cART with IFNα14 resulted in a more pronounced reduction of HIV viremia levels over cART alone, but the effect was not potent enough to be detected at the viral DNA level or to prevent virus rebound following therapy interruption in immune system-humanized mice.


Asunto(s)
Antirretrovirales/uso terapéutico , Antivirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Interferón-alfa/uso terapéutico , Viremia/tratamiento farmacológico , Animales , Antirretrovirales/administración & dosificación , Antivirales/administración & dosificación , Quimioterapia Combinada , Femenino , Infecciones por VIH/virología , Humanos , Interferón-alfa/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Carga Viral/efectos de los fármacos , Viremia/virología
18.
mBio ; 10(1)2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670616

RESUMEN

Friend virus (FV) is a naturally occurring mouse retrovirus that infects dividing cells of the hematopoietic lineage, including antigen-presenting cells (APCs). The infection of APCs by viruses often induces their dysfunction, and it has been shown that FV infection reduces the ability of dendritic cells (DCs) to prime critical CD8+ T cell responses. Nonetheless, mice mount vigorous CD8+ T cell responses, so we investigated whether B cells might serve as alternative APCs during FV infection. Direct ex vivo analysis of B cells from FV-infected mice revealed that infected but not uninfected B cells upregulated expression of the costimulatory molecules CD80, CD86, and CD40, as well as major histocompatibility complex class II (MHC-II) molecules. Furthermore, in vitro studies showed that, compared to uninfected B cells from the same mice, the FV-infected B cells had significantly enhanced APC function, as measured by their capacity to prime CD8+ T cell activation and proliferation. Thus, in contrast to DCs, infection of B cells with FV enhanced their APC capacity and ability to stimulate the CD8+ T cell responses essential for virus control. FV infections also induce the activation and expansion of regulatory T cells (Tregs), so it was of interest to determine the impact of Tregs on B cell activation. The upregulation of costimulatory molecule expression and APC function of B cells was even more strongly enhanced by in vivo depletion of regulatory T cells than infection. Thus, Tregs exert potent homeostatic suppression of B cell activation that is partially overcome by FV infection.IMPORTANCE The primary role of B cells in immunity is considered the production of pathogen-specific antibodies, but another, less-well-studied, function of B cells is to present foreign antigens to T cells to stimulate their activation and proliferation. Dendritic cells (DCs) are considered the most important antigen-presenting cells (APCs) for CD8+ T cells, but DCs lose APC function when infected with Friend virus (FV), a model retrovirus of mice. Interestingly, B cells were better able to stimulate CD8+ T cell responses when they were infected with FV. We also found that the activation status of B cells under homeostatic conditions was potently modulated by regulatory T cells. This study illustrates an important link between B cell and T cell responses and illustrates an additional mechanism by which regulatory T cells suppress critical T cell responses during viral infections.


Asunto(s)
Presentación de Antígeno , Linfocitos B/inmunología , Virus de la Leucemia Murina de Friend/inmunología , Linfocitos T Reguladores/inmunología , Animales , Linfocitos B/química , Antígeno B7-1/análisis , Antígeno B7-2/análisis , Antígenos CD40/análisis , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Antígenos de Histocompatibilidad Clase II/análisis , Leucemia Experimental/inmunología , Leucemia Experimental/virología , Activación de Linfocitos , Ratones , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/virología , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/virología
19.
Nat Commun ; 10(1): 794, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770827

RESUMEN

Prolonged exposure of CD8+ T cells to antigenic stimulation, as in chronic viral infections, leads to a state of diminished function termed exhaustion. We now demonstrate that even during exhaustion there is a subset of functional CD8+ T cells defined by surface expression of SIRPα, a protein not previously reported on lymphocytes. On SIRPα+ CD8+ T cells, expression of co-inhibitory receptors is counterbalanced by expression of co-stimulatory receptors and it is only SIRPα+ cells that actively proliferate, transcribe IFNγ and show cytolytic activity. Furthermore, target cells that express the ligand for SIRPα, CD47, are more susceptible to CD8+ T cell-killing in vivo. SIRPα+ CD8+ T cells are evident in mice infected with Friend retrovirus, LCMV Clone 13, and in patients with chronic HCV infections. Furthermore, therapeutic blockade of PD-L1 to reinvigorate CD8+ T cells during chronic infection expands the cytotoxic subset of SIRPα+ CD8+ T cells.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Receptores Inmunológicos/inmunología , Animales , Infecciones por Arenaviridae/genética , Infecciones por Arenaviridae/virología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Femenino , Expresión Génica/inmunología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/virología
20.
PLoS One ; 13(4): e0195402, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29614127

RESUMEN

Recent vaccine studies with experimental antigens have shown that regulatory T cells (Tregs) constrain the magnitude of B cell responses. This homeostatic Treg-mediated suppression is thought to reduce the potential of germinal center (GC) responses to generate autoreactive antibodies. However, essentially opposite results were observed in live influenza infections where Tregs promoted B cell and antibody responses. Thus, it remains unclear whether Tregs dampen or enhance B cell responses, especially during live viral infections. Here, we use mice infected with Friend retrovirus (FV), which induces a robust expansion of Tregs. Depletion of Tregs led to elevated activation, proliferation, and class switching of B cells. In addition, Treg depletion enhanced the production of virus-specific and virus-neutralizing antibodies and reduced FV viremia. Thus, in contrast to influenza infection, Tregs either directly or indirectly suppress B cells during mouse retroviral infection indicating that the ultimate effect of Tregs on B cell responses is specific to the particular infectious agent.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Virus de la Leucemia Murina de Friend/inmunología , Leucemia Experimental/inmunología , Infecciones por Retroviridae/inmunología , Linfocitos T Reguladores/inmunología , Infecciones Tumorales por Virus/inmunología , Animales , Linfocitos B/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Inmunoglobulina G/metabolismo , Ratones Transgénicos , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA