Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
New Phytol ; 214(3): 1064-1077, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27159833

RESUMEN

Leaf dark respiration (Rdark ) represents an important component controlling the carbon balance in tropical forests. Here, we test how nitrogen (N) and phosphorus (P) affect Rdark and its relationship with photosynthesis using three widely separated tropical forests which differ in soil fertility. Rdark was measured on 431 rainforest canopy trees, from 182 species, in French Guiana, Peru and Australia. The variation in Rdark was examined in relation to leaf N and P content, leaf structure and maximum photosynthetic rates at ambient and saturating atmospheric CO2 concentration. We found that the site with the lowest fertility (French Guiana) exhibited greater rates of Rdark per unit leaf N, P and photosynthesis. The data from Australia, for which there were no phylogenetic overlaps with the samples from the South American sites, yielded the most distinct relationships of Rdark with the measured leaf traits. Our data indicate that no single universal scaling relationship accounts for variation in Rdark across this large biogeographical space. Variability between sites in the absolute rates of Rdark and the Rdark  : photosynthesis ratio were driven by variations in N- and P-use efficiency, which were related to both taxonomic and environmental variability.


Asunto(s)
Bosques , Nitrógeno/metabolismo , Fósforo/metabolismo , Clima Tropical , Australia , Respiración de la Célula , Oscuridad , Guyana Francesa , Luz , Perú , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Análisis de Regresión , Suelo/química
2.
Glob Chang Biol ; 21(1): 12-31, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25131443

RESUMEN

Ecosystem services are typically valued for their immediate material or cultural benefits to human wellbeing, supported by regulating and supporting services. Under climate change, with more frequent stresses and novel shocks, 'climate adaptation services', are defined as the benefits to people from increased social ability to respond to change, provided by the capability of ecosystems to moderate and adapt to climate change and variability. They broaden the ecosystem services framework to assist decision makers in planning for an uncertain future with new choices and options. We present a generic framework for operationalising the adaptation services concept. Four steps guide the identification of intrinsic ecological mechanisms that facilitate the maintenance and emergence of ecosystem services during periods of change, and so materialise as adaptation services. We applied this framework for four contrasted Australian ecosystems. Comparative analyses enabled by the operational framework suggest that adaptation services that emerge during trajectories of ecological change are supported by common mechanisms: vegetation structural diversity, the role of keystone species or functional groups, response diversity and landscape connectivity, which underpin the persistence of function and the reassembly of ecological communities under severe climate change and variability. Such understanding should guide ecosystem management towards adaptation planning.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Australia , Biodiversidad , Predicción
3.
Am J Bot ; 100(7): 1356-68, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23825137

RESUMEN

PREMISE OF STUDY: Plant functional traits are commonly used as proxies for plant responses to environmental challenges, yet few studies have explored how functional trait distributions differ across gradients of land-use change. By comparing trait distributions in intact forests with those across land-use change gradients, we can improve our understanding of the ways land-use change alters the diversity and functioning of plant communities. METHODS: We examined how the variation and distribution of trait values for seven plant functional traits differ between reference natural forest and three types of land-use conversion (pasture, old-field, or "legacy" sites-regrowth following logging), landscape productivity (NPP) and vegetation strata (tree or non-tree "understory"), in a meta-analysis of studies from 15 landscapes across five continents. KEY RESULTS: Although trait variation often differed between land-uses within a landscape, these patterns were rarely consistent across landscapes. The variance and distribution of traits were more likely to differ consistently between natural forest and land-use conversion categories for understory (non-tree) plants than for trees. Landscape productivity did not significantly alter the difference in trait variance between natural forest and land-use conversion categories for any trait except dispersal. CONCLUSIONS: Our results suggest that even for traits well linked to plant environmental response strategies, broad classes of land-use change and landscape productivity are not generally useful indicators of the mechanisms driving compositional changes in human-modified forest systems.


Asunto(s)
Ecosistema , Fenómenos Fisiológicos de las Plantas , Árboles/fisiología , Demografía , Monitoreo del Ambiente
4.
Ecol Lett ; 13(1): 76-86, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19917052

RESUMEN

Ecosystem resilience depends on functional redundancy (the number of species contributing similarly to an ecosystem function) and response diversity (how functionally similar species respond differently to disturbance). Here, we explore how land-use change impacts these attributes in plant communities, using data from 18 land-use intensity gradients that represent five biomes and > 2800 species. We identify functional groups using multivariate analysis of plant traits which influence ecosystem processes. Functional redundancy is calculated as the species richness within each group, and response diversity as the multivariate within-group dispersion in response trait space, using traits that influence responses to disturbances. Meta-analysis across all datasets showed that land-use intensification significantly reduced both functional redundancy and response diversity, although specific relationships varied considerably among the different land-use gradients. These results indicate that intensified management of ecosystems for resource extraction can increase their vulnerability to future disturbances.


Asunto(s)
Agricultura , Biodiversidad , Fenómenos Fisiológicos de las Plantas , Bases de Datos Factuales , Modelos Biológicos , Dinámica Poblacional
5.
Oecologia ; 162(4): 1047-58, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20012098

RESUMEN

Resource availability and disturbance are important factors that shape the composition, structure, and functioning of ecosystems. We investigated the effects of soil fertility and disturbance on plant-soil interactions and nutrient cycling in a diverse tropical rainforest. Our goal was to determine how common soil specialisation is among species and how plant-soil interactions affect ecosystem functioning in the presence of disturbance. Most species (59%) showed significant fidelity to either fertile (basalt) or infertile (schist) soils. Obligate schist specialists (six species) contributed 39 and 37% to total stand-level basal area and aboveground net primary productivity, respectively. High nutrient use efficiency of schist specialists reduced the rates of within-stand nutrient cycling through the production of nutrient-poor plant tissues and litter. Although forests on schist soils had higher basal area and similar rates of productivity to forests on basalt, uptake of Mg, K, P, and N were markedly less on schist than on basalt, particularly after a cyclone disturbance. Stands on schist soils were also less affected by the cyclone and, as a result, contributed less (ca. 50%) Mg, K, P, and N inputs to the forest floor (via litterfall) than stands on basalt soils. System "openness" (i.e. the risk of nutrient loss) from cyclone-affected basalt forests was minimised by high rates of uptake following disturbance and large effective cation exchange capacities of soils. Soil-plant-disturbance interactions are likely to engender different fitness-enhancing strategies on fertile and infertile soils, possibly leading to the development and/or maintenance of diversity in rainforests.


Asunto(s)
Ecosistema , Lluvia , Suelo/análisis , Árboles/metabolismo , Clima Tropical , Carbono/metabolismo , Tormentas Ciclónicas , Alimentos , Metales/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Dinámica Poblacional , Queensland , Factores de Riesgo , Estaciones del Año , Silicatos/metabolismo , Especificidad de la Especie , Factores de Tiempo , Árboles/clasificación , Árboles/crecimiento & desarrollo
6.
Ecol Appl ; 19(1): 236-53, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19323186

RESUMEN

Leaf chemical and spectral properties of 162 canopy species were measured at 11 tropical forest sites along a 6024 mm precipitation/yr and 8.7 degrees C climate gradient in Queensland, Australia. We found that variations in foliar nitrogen, phosphorus, chlorophyll a and b, and carotenoid concentrations, as well as specific leaf area (SLA), were expressed more strongly among species within a site than along the entire climate gradient. Integrated chemical signatures consisting of all leaf properties did not aggregate well at the genus or family levels. Leaf chemical diversity was maximal in the lowland tropical forest sites with the highest temperatures and moderate precipitation levels. Cooler and wetter montane tropical forests contained species with measurably lower variation in their chemical signatures. Foliar optical properties measured from 400 to 2500 nm were also highly diverse at the species level, and were well correlated with an ensemble of leaf chemical properties and SLA (r2 = 0.54-0.83). A probabilistic diversity model amplified the leaf chemical differences among species, revealing that lowland tropical forests maintain a chemical diversity per unit richness far greater than that of higher elevation forests in Australia. Modeled patterns in spectral diversity and species richness paralleled those of chemical diversity, demonstrating a linkage between the taxonomic and remotely sensed properties of tropical forest canopies. We conclude that species are the taxonomic unit causing chemical variance in Australian tropical forest canopies, and thus ecological and remote sensing studies should consider the role that species play in defining the functional properties of these forests.


Asunto(s)
Ecosistema , Hojas de la Planta , Árboles/fisiología , Clima Tropical , Australia , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Modelos Biológicos , Modelos Estadísticos , Especificidad de la Especie , Análisis Espectral
7.
Ann Bot ; 101(9): 1363-77, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18387969

RESUMEN

BACKGROUND AND AIMS: There has been little previous work on the toughness of the laminae of monocots in tropical lowland rain forest (TLRF) despite the potential importance of greater toughness in inhibiting herbivory by invertebrates. Of 15 monocot families with >100 species in TLRF, eight have notably high densities of fibres in the lamina so that high values for toughness are expected. METHODS: In north-eastern Australia punch strength was determined with a penetrometer for both immature leaves (approx. 30 % final area on average) and fully expanded, fully toughened leaves. In Singapore and Panama, fracture toughness was determined with an automated scissors apparatus using fully toughened leaves only. KEY RESULTS: In Australia punch strength was, on average, 7x greater in shade-tolerant monocots than in neighbouring dicots at the immature stage, and 3x greater at the mature stage. In Singapore, shade-tolerant monocots had, on average, 1.3x higher values for fracture toughness than neighbouring dicots. In Panama, both shade-tolerant and gap-demanding monocots were tested; they did not differ in fracture toughness. The monocots had markedly higher values than the dicots whether shade-tolerant or gap-demanding species were considered. CONCLUSIONS: It is predicted that monocots will be found to experience lower rates of herbivory by invertebrates than dicots. The tough monocot leaves include both stiff leaves containing relatively little water at saturation (e.g. palms), and leaves which lack stiffness, are rich in water at saturation and roll readily during dry weather or even in bright sun around midday (e.g. gingers, heliconias and marants). Monocot leaves also show that it is possible for leaves to be notably tough throughout the expansion phase of development, something never recorded for dicots. The need to broaden the botanist's mental picture of a 'tough leaf' is emphasized.


Asunto(s)
Magnoliopsida/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Árboles/genética , Clima Tropical , Australia , Magnoliopsida/clasificación , Panamá , Lluvia , Singapur , Especificidad de la Especie
8.
Ann Bot ; 101(9): 1379-89, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18387972

RESUMEN

BACKGROUND AND AIMS: In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50-100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion. METHODS: At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants. KEY RESULTS: At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots. CONCLUSIONS: The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed.


Asunto(s)
Magnoliopsida/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Clima Tropical , Alimentación Animal , Animales , Invertebrados/fisiología , Magnoliopsida/parasitología , Magnoliopsida/fisiología , Hojas de la Planta/parasitología , Hojas de la Planta/fisiología , Árboles/parasitología , Árboles/fisiología
9.
Sci Total Environ ; 634: 382-393, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29627562

RESUMEN

An unprecedented rate of global environmental change is predicted for the next century. The response to this change by ecosystems around the world is highly uncertain. To address this uncertainty, it is critical to understand the potential drivers and mechanisms of change in order to develop more reliable predictions. Australia's Long Term Ecological Research Network (LTERN) has brought together some of the longest running (10-60years) continuous environmental monitoring programs in the southern hemisphere. Here, we compare climatic variables recorded at five LTERN plot network sites during their period of operation and place them into the context of long-term climatic trends. Then, using our unique Australian long-term datasets (total 117 survey years across four biomes), we synthesize results from a series of case studies to test two hypotheses: 1) extreme weather events for each plot network have increased over the last decade, and; 2) trends in biodiversity will be associated with recent climate change, either directly or indirectly through climate-mediated disturbance (wildfire) responses. We examined the biodiversity responses to environmental change for evidence of non-linear behavior. In line with hypothesis 1), an increase in extreme climate events occurred within the last decade for each plot network. For hypothesis 2), climate, wildfire, or both were correlated with biodiversity responses at each plot network, but there was no evidence of non-linear change. However, the influence of climate or fire was context-specific. Biodiversity responded to recent climate change either directly or indirectly as a consequence of changes in fire regimes or climate-mediated fire responses. A national long-term monitoring framework allowed us to find contrasting species abundance or community responses to climate and disturbance across four of the major biomes of Australia, highlighting the need to establish and resource long-term monitoring programs across representative ecosystem types, which are likely to show context-specific responses.

10.
PLoS One ; 9(2): e89084, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24551222

RESUMEN

The high concentration of the world's species in tropical forests endows these systems with particular importance for retaining global biodiversity, yet it also presents significant challenges for ecology and conservation science. The vast number of rare and yet to be discovered species restricts the applicability of species-level modelling for tropical forests, while the capacity of community classification approaches to identify priorities for conservation and management is also limited. Here we assessed the degree to which macroecological modelling can overcome shortfalls in our knowledge of biodiversity in tropical forests and help identify priority areas for their conservation and management. We used 527 plant community survey plots in the Australian Wet Tropics to generate models and predictions of species richness, compositional dissimilarity, and community composition for all the 4,313 vascular plant species recorded across the region (>1.3 million communities (grid cells)). We then applied these predictions to identify areas of tropical forest likely to contain the greatest concentration of species, rare species, endemic species and primitive angiosperm families. Synthesising these alternative attributes of diversity into a single index of conservation value, we identified two areas within the Australian wet tropics that should be a high priority for future conservation actions: the Atherton Tablelands and Daintree rainforest. Our findings demonstrate the value of macroecological modelling in identifying priority areas for conservation and management actions within highly diverse systems, such as tropical forests.


Asunto(s)
Conservación de los Recursos Naturales , Árboles/fisiología , Clima Tropical , Australia , Biodiversidad , Geografía , Modelos Teóricos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA