Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1859(11): 2181-2192, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28803731

RESUMEN

The immunity proteins against pore-forming colicins represent a family of integral membrane proteins that reside in the inner membrane of producing cells. Cai, the colicin A immunity protein, was characterized here in detergent micelles by circular dichroism (CD), size exclusion chromatography, chemical cross-linking, nuclear magnetic resonance (NMR) spectroscopy, cysteine accessibility, and colicin A binding in detergent micelles. Bile-salt derivatives induced extensive protein polymerization that precluded further investigation. The physical characterization of detergent-solubilized protein indicates that phosphate-containing detergents are more efficient in extracting, solubilizing and maintaining Cai in a monomeric state. Yet, their capacity to ensure protein activity, reconstitution, helix packing, and high-quality NMR spectra was inferior to that of milder detergents. Solvent ionic strength and composition greatly modified the solubilizing capacity of milder detergents. Most importantly, binding to the colicin A pore-forming domain (pf-ColA) occurred almost exclusively in sugar-derived detergents. The relative performance of the different detergents in each experiment depends on their impact not only on Cai structure, solubility and oligomerization state, but also on other reaction components and technical aspects. Thus, proteoliposomes were best obtained from protein in LDAO micelles, possibly also due to indirect effects on the lipidic bilayer. The compatibility of a detergent with Cai/pf-ColA complex formation is influenced by its effect on the conformational landscape of each protein, where detergent-mediated pf-ColA denaturation could also lead to negative results. The NMR spectra were greatly affected by the solubility, monodispersity, fold and dynamics of the protein-detergent complexes, and none of those tested here provided NMR spectra of sufficient quality to allow for peak assignment. Cai function could be proven in alkyl glycosides and not in those detergents that afforded the best solubility, reconstitution efficiency or spectral quality indicating that these criteria cannot be taken as unambiguous proof of nativeness without the support of direct activity measurements.


Asunto(s)
Colicinas/química , Colicinas/aislamiento & purificación , Detergentes/química , Micelas , Secuencia de Aminoácidos , Cromatografía en Gel , Dicroismo Circular , Detergentes/farmacología , Escherichia coli/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Análisis de Secuencia de Proteína , Solubilidad
2.
J Phys Chem B ; 126(30): 5655-5666, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35880265

RESUMEN

Solution-state NMR can be used to study protein-lipid interactions, in particular, the effect that proteins have on lipids. One drawback is that only small assemblies can be studied, and therefore, fast-tumbling bicelles are commonly used. Bicelles contain a lipid bilayer that is solubilized by detergents. A complication is that they are only stable at high concentrations, exceeding the CMC of the detergent. This issue has previously been addressed by introducing a detergent (Cyclosfos-6) with a substantially lower CMC. Here, we developed a set of bicelles using this detergent for studies of membrane-associated mycobacterial proteins, for example, PimA, a key enzyme for bacterial growth. To mimic the lipid composition of mycobacterial membranes, PI, PG, and PC lipids were used. Diffusion NMR was used to characterize the bicelles, and spin relaxation was used to measure the dynamic properties of the lipids. The results suggest that bicelles are formed, although they are smaller than "conventional" bicelles. Moreover, we studied the effect of MTSL-labeled PimA on bicelles containing PI and PC. The paramagnetic label was shown to have a shallow location in the bicelle, affecting the glycerol backbone of the lipids. We foresee that these bicelles will be useful for detailed studies of protein-lipid interactions.


Asunto(s)
Detergentes , Fosfatidilinositoles , Detergentes/química , Glicosiltransferasas , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Yoduro de Potasio
3.
Elife ; 102021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33554862

RESUMEN

We follow the cotranslational biosynthesis of three multispanning Escherichia coli inner membrane proteins in vivo using high-resolution force profile analysis. The force profiles show that the nascent chain is subjected to rapidly varying pulling forces during translation and reveal unexpected complexities in the membrane integration process. We find that an N-terminal cytoplasmic domain can fold in the ribosome exit tunnel before membrane integration starts, that charged residues and membrane-interacting segments such as re-entrant loops and surface helices flanking a transmembrane helix (TMH) can advance or delay membrane integration, and that point mutations in an upstream TMH can affect the pulling forces generated by downstream TMHs in a highly position-dependent manner, suggestive of residue-specific interactions between TMHs during the integration process. Our results support the 'sliding' model of translocon-mediated membrane protein integration, in which hydrophobic segments are continually exposed to the lipid bilayer during their passage through the SecYEG translocon.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Biosíntesis de Proteínas , Secuencias de Aminoácidos , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA