Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Diabetologia ; 66(4): 674-694, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36633628

RESUMEN

AIMS/HYPOTHESIS: Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk. METHODS: A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-ßH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles. RESULTS: CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-ßH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-ßH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function. CONCLUSIONS/INTERPRETATION: Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Glucosa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/genética , Pez Cebra/genética
2.
Haematologica ; 106(12): 3149-3161, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054105

RESUMEN

Mutations in HFE cause hereditary hemochromatosis type I hallmarked by increased iron absorption, iron accumulation in hepatocytes and iron deficiency in myeloid cells. HFE encodes an MHC-I like molecule, but its function in immune responses to infection remains incompletely understood. Here, we investigated putative roles of Hfe in myeloid cells and hepatocytes, separately, upon infection with Salmonella Typhimurium, an intracellular bacterium with iron-dependent virulence. We found that constitutive and macrophage-specific deletion of Hfe protected infected mice. The propagation of Salmonella in macrophages was reduced due to limited intramacrophage iron availability for bacterial growth and increased expression of the anti-microbial enzyme nitric oxide synthase-2. By contrast, mice with hepatocyte-specific deletion of Hfe succumbed earlier to Salmonella infection because of unrestricted extracellular bacterial replication associated with high iron availability in the serum and impaired expression of essential host defense molecules such as interleukin-6, interferon-γ and nitric oxide synthase-2. Wild-type mice subjected to dietary iron overload phenocopied hepatocyte-specific Hfe deficiency suggesting that increased iron availability in the serum is deleterious in Salmonella infection and underlies impaired host immune responses. Moreover, the macrophage-specific effect is dominant over hepatocyte-specific Hfe-depletion, as Hfe knock-out mice have increased survival despite the higher parenchymal iron load associated with systemic loss of Hfe. We conclude that cell-specific expression of Hfe in hepatocytes and macrophages differentially affects the course of infections with specific pathogens by determining bacterial iron access and the efficacy of anti-microbial immune effector pathways. This may explain the high frequency and evolutionary conservation of human HFE mutations.


Asunto(s)
Hemocromatosis , Infecciones por Salmonella , Animales , Proteína de la Hemocromatosis/genética , Ratones , Ratones Noqueados , Infecciones por Salmonella/genética , Salmonella typhimurium/genética , Serogrupo
3.
Molecules ; 25(18)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927708

RESUMEN

Clear cell foci (CCF) of the liver are considered to be pre-neoplastic lesions of hepatocellular adenomas and carcinomas. They are hallmarked by glycogen overload and activation of AKT (v-akt murine thymoma viral oncogene homolog)/mTOR (mammalian target of rapamycin)-signaling. Here, we report the transcriptome and proteome of CCF extracted from human liver biopsies by laser capture microdissection. We found 14 genes and 22 proteins differentially expressed in CCF and the majority of these were expressed at lower levels in CCF. Using immunohistochemistry, the reduced expressions of STBD1 (starch-binding domain-containing protein 1), USP28 (ubiquitin-specific peptidase 28), monad/WDR92 (WD repeat domain 92), CYB5B (Cytochrome b5 type B), and HSPE1 (10 kDa heat shock protein, mitochondrial) were validated in CCF in independent specimens. Knockout of Stbd1, the gene coding for Starch-binding domain-containing protein 1, in mice did not have a significant effect on liver glycogen levels, indicating that additional factors are required for glycogen overload in CCF. Usp28 knockout mice did not show changes in glycogen storage in diethylnitrosamine-induced liver carcinoma, demonstrating that CCF are distinct from this type of cancer model, despite the decreased USP28 expression. Moreover, our data indicates that decreased USP28 expression is a novel factor contributing to the pre-neoplastic character of CCF. In summary, our work identifies several novel and unexpected candidates that are differentially expressed in CCF and that have functions in glycogen metabolism and tumorigenesis.


Asunto(s)
Biomarcadores de Tumor , Perfilación de la Expresión Génica , Glucógeno/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Proteómica , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Biología Computacional/métodos , Humanos , Inmunohistoquímica , Hepatopatías/complicaciones , Hepatopatías/patología , Neoplasias Hepáticas/patología , Transcriptoma
4.
PLoS Comput Biol ; 13(1): e1005322, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28068331

RESUMEN

Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional ferroportin-independent homeostasis mechanisms.


Asunto(s)
Hepcidinas/metabolismo , Inflamación/metabolismo , Sobrecarga de Hierro/metabolismo , Hierro/metabolismo , Modelos Biológicos , Redes y Vías Metabólicas
5.
J Biol Inorg Chem ; 20(8): 1229-38, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26468126

RESUMEN

Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins that supply electrons for steroidogenesis, causes a block in ecdysone synthesis and developmental arrest in the third instar larval stage. Here we show that mutants in Drosophila mitoferrin (dmfrn), the gene encoding a mitochondrial carrier protein implicated in mitochondrial iron import, fail to grow and initiate metamorphosis under dietary iron depletion or when ferritin function is partially compromised. In mutant dmfrn larvae reared under iron replete conditions, the expression of halloween genes is increased and 20-hydroxyecdysone (20E), the active form of ecdysone, is synthesized. In contrast, addition of an iron chelator to the diet of mutant dmfrn larvae disrupts 20E synthesis. Dietary addition of 20E has little effect on the growth defects, but enables approximately one-third of the iron-deprived dmfrn larvae to successfully turn into pupae and, in a smaller percentage, into adults. This partial rescue is not observed with dietary supply of ecdysone's precursor 7-dehydrocholesterol, a precursor in the ecdysone biosynthetic pathway. The findings reported here support the notion that a physiological supply of mitochondrial iron for the synthesis of iron-sulfur clusters and heme is required in the prothoracic glands of insect larvae for steroidogenesis. Furthermore, mitochondrial iron is also essential for normal larval growth.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/biosíntesis , Hierro/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Larva , Mitocondrias/química , Mitocondrias/metabolismo , Mutación
6.
PLoS One ; 17(8): e0261543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35960718

RESUMEN

Protein S-palmitoylation, the addition of a long-chain fatty acid to target proteins, is among the most frequent reversible protein modifications in Metazoa, affecting subcellular protein localization, trafficking and protein-protein interactions. S-palmitoylated proteins are abundant in the neuronal system and are associated with neuronal diseases and cancer. Despite the importance of this post-translational modification, it has not been thoroughly studied in the model organism Drosophila melanogaster. Here we present the palmitoylome of Drosophila S2R+ cells, comprising 198 proteins, an estimated 3.5% of expressed genes in these cells. Comparison of orthologs between mammals and Drosophila suggests that S-palmitoylated proteins are more conserved between these distant phyla than non-S-palmitoylated proteins. To identify putative client proteins and interaction partners of the DHHC family of protein acyl-transferases (PATs) we established DHHC-BioID, a proximity biotinylation-based method. In S2R+ cells, ectopic expression of the DHHC-PAT dHip14-BioID in combination with Snap24 or an interaction-deficient Snap24-mutant as a negative control, resulted in biotinylation of Snap24 but not the Snap24-mutant. DHHC-BioID in S2R+ cells using 10 different DHHC-PATs as bait identified 520 putative DHHC-PAT interaction partners of which 48 were S-palmitoylated and are therefore putative DHHC-PAT client proteins. Comparison of putative client protein/DHHC-PAT combinations indicates that CG8314, CG5196, CG5880 and Patsas have a preference for transmembrane proteins, while S-palmitoylated proteins with the Hip14-interaction motif are most enriched by DHHC-BioID variants of approximated and dHip14. Finally, we show that BioID is active in larval and adult Drosophila and that dHip14-BioID rescues dHip14 mutant flies, indicating that DHHC-BioID is non-toxic. In summary we provide the first systematic analysis of a Drosophila palmitoylome. We show that DHHC-BioID is sensitive and specific enough to identify DHHC-PAT client proteins and provide DHHC-PAT assignment for ca. 25% of the S2R+ cell palmitoylome, providing a valuable resource. In addition, we establish DHHC-BioID as a useful concept for the identification of tissue-specific DHHC-PAT interactomes in Drosophila.


Asunto(s)
Aciltransferasas , Drosophila melanogaster , Aciltransferasas/genética , Animales , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Lipoilación/fisiología , Mamíferos/metabolismo , Procesamiento Proteico-Postraduccional
7.
Nat Genet ; 54(9): 1332-1344, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071172

RESUMEN

Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention.


Asunto(s)
Estudio de Asociación del Genoma Completo , Conducta Sedentaria , Actinina/genética , Estudios Transversales , Ejercicio Físico/fisiología , Humanos , Actividades Recreativas
8.
Cells ; 10(10)2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34685767

RESUMEN

OBJECTIVE: In the rat, the pancreatic islet transplantation model is an established method to induce hepatocellular carcinomas (HCC), due to insulin-mediated metabolic and molecular alterations like increased glycolysis and de novo lipogenesis and the oncogenic AKT/mTOR pathway including upregulation of the transcription factor Carbohydrate-response element-binding protein (ChREBP). ChREBP could therefore represent an essential oncogenic co-factor during hormonally induced hepatocarcinogenesis. METHODS: Pancreatic islet transplantation was implemented in diabetic C57Bl/6J (wild type, WT) and ChREBP-knockout (KO) mice for 6 and 12 months. Liver tissue was examined using histology, immunohistochemistry, electron microscopy and Western blot analysis. Finally, we performed NGS-based transcriptome analysis between WT and KO liver tumor tissues. RESULTS: Three hepatocellular carcinomas were detectable after 6 and 12 months in diabetic transplanted WT mice, but only one in a KO mouse after 12 months. Pre-neoplastic clear cell foci (CCF) were also present in liver acini downstream of the islets in WT and KO mice. In KO tumors, glycolysis, de novo lipogenesis and AKT/mTOR signalling were strongly downregulated compared to WT lesions. Extrafocal liver tissue of diabetic, transplanted KO mice revealed less glycogen storage and proliferative activity than WT mice. From transcriptome analysis, we identified a set of transcripts pertaining to metabolic, oncogenic and immunogenic pathways that are differentially expressed between tumors of WT and KO mice. Of 315 metabolism-associated genes, we observed 199 genes that displayed upregulation in the tumor of WT mice, whereas 116 transcripts showed their downregulated expression in KO mice tumor. CONCLUSIONS: The pancreatic islet transplantation model is a suitable method to study hormonally induced hepatocarcinogenesis also in mice, allowing combination with gene knockout models. Our data indicate that deletion of ChREBP delays insulin-induced hepatocarcinogenesis, suggesting a combined oncogenic and lipogenic function of ChREBP along AKT/mTOR-mediated proliferation of hepatocytes and induction of hepatocellular carcinoma.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma Hepatocelular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hormonas/efectos adversos , Neoplasias Hepáticas/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/ultraestructura , Proliferación Celular , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glucógeno/metabolismo , Glucólisis , Lipogénesis , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/ultraestructura , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
BMC Dev Biol ; 10: 68, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20565922

RESUMEN

BACKGROUND: Mammals and Drosophila melanogaster share some striking similarities in spermatogenesis. Mitochondria in spermatids undergo dramatic morphological changes and syncytial spermatids are stripped from their cytoplasm and then individually wrapped by single membranes in an individualization process. In mammalian and fruit fly testis, components of the mitochondrial iron metabolism are expressed, but so far their function during spermatogenesis is unknown. Here we investigate the role of Drosophila mitoferrin (dmfrn), which is a mitochondrial carrier protein with an established role in the mitochondrial iron metabolism, during spermatogenesis. RESULTS: We found that P-element insertions into the 5'-untranslated region of the dmfrn gene cause recessive male sterility, which was rescued by a fluorescently tagged transgenic dmfrn genomic construct (dmfrnvenus). Testes of mutant homozygous dmfrnSH115 flies were either small with unorganized content or contained some partially elongated spermatids, or testes were of normal size but lacked mature sperm. Testis squashes indicated that spermatid elongation was defective and electron micrographs showed mitochondrial defects in elongated spermatids and indicated failed individualization. Using a LacZ reporter and the dmfrnvenus transgene, we found that dmfrn expression in testes was highest in spermatids, coinciding with the stages that showed defects in the mutants. Dmfrn-venus protein accumulated in mitochondrial derivatives of spermatids, where it remained until most of it was stripped off during individualization and disposed of in waste bags. Male sterility in flies with the hypomorph alleles dmfrnBG00456 and dmfrnEY01302 over the deletion Df(3R)ED6277 was increased by dietary iron chelation and suppressed by iron supplementation of the food, while male sterility of dmfrnSH115/Df(3R)ED6277 flies was not affected by food iron levels. CONCLUSIONS: In this work, we show that mutations in the Drosophila mitoferrin gene result in male sterility caused by developmental defects. From the sensitivity of the hypomorph mutants to low food iron levels we conclude that mitochondrial iron is essential for spermatogenesis. This is the first time that a link between the mitochondrial iron metabolism and spermatogenesis has been shown. Furthermore, due to the similar expression patterns of some mitochondrial iron metabolism genes in Drosophila and mammals, it is likely that our results are applicable for mammals as well.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Animales , Masculino , Espermatogénesis
10.
Biochem Biophys Res Commun ; 400(3): 442-6, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20807501

RESUMEN

Iron is essential for life and is needed for cell proliferation and cell cycle progression. Iron deprivation results first in cell cycle arrest and then in apoptosis. The Drosophila tumorous larval hemocyte cell line l(2) mbn was used to study the sensitivity and cellular response to iron deprivation through the chelator desferrioxamine (DFO). At a concentration of 10 µM DFO or more the proliferation was inhibited reversibly, while the amount of dead cells did not increase. FACS analysis showed that the cell cycle was arrested in G1/S-phase and the transcript level of cycE was decreased to less than 50% of control cells. These results show that iron chelation in this insect tumorous cell line causes a specific and coordinated cell cycle arrest.


Asunto(s)
Ciclo Celular , Proliferación Celular , Drosophila melanogaster/citología , Hierro/fisiología , Animales , Línea Celular Tumoral , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Hierro/farmacología
11.
Biochem J ; 421(3): 463-71, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19453295

RESUMEN

Mrs3p and Mrs4p (Mrs3/4p) are yeast mitochondrial iron carrier proteins that play important roles in ISC (iron-sulphur cluster) and haem biosynthesis. At low iron conditions, mitochondrial and cytoplasmic ISC protein maturation is correlated with MRS3/4 expression. Zebrafish mitoferrin1 (mfrn1), one of two MRS3/4 orthologues, is essential for erythropoiesis, but little is known about the ubiquitously expressed paralogue mfrn2. In the present study we identified a single mitoferrin gene (dmfrn) in the genome of Drosophila melanogaster, which is probably an orthologue of mfrn2. Overexpression of dmfrn in the Drosophila l(2)mbn cell line (mbn-dmfrn) resulted in decreased binding between IRP-1A (iron regulatory protein 1A) and stem-loop RNA structures referred to as IREs (iron responsive elements). mbn-dmfrn cell lines also had increased cytoplasmic aconitase activity and slightly decreased iron content. In contrast, iron loading results in decreased IRP-1A-IRE binding, but increased cellular iron content, in experimental mbn-dmfrn and control cell lines. Iron loading also increases cytoplasmic aconitase activity in all cell lines, but with slightly higher activity observed in mbn-dmfrn cells. From this we concluded that dmfrn overexpression stimulates cytoplasmic ISC protein maturation, as has been reported for MRS3/4 overexpression. Compared with control cell lines, mbn-dmfrn cells had higher Fer1HCH (ferritin 1 heavy chain homologue) transcript and protein levels. RNA interference of the putative Drosophila orthologue of human ABCB7, a mitochondrial transporter involved in cytoplasmic ISC protein maturation, restored Fer1HCH transcript levels of iron-treated mbn-dmfrn cells to those of control cells grown in normal medium. These results suggest that dmfrn overexpression in l(2)mbn cells causes an 'overestimation' of the cellular iron content, and that regulation of Fer1HCH transcript abundance probably depends on cytoplasmic ISC protein maturation.


Asunto(s)
Apoferritinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación hacia Arriba , Secuencia de Aminoácidos , Animales , Apoferritinas/química , Apoferritinas/metabolismo , Línea Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
12.
Sci Rep ; 7(1): 4023, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642463

RESUMEN

Liver cells communicate with the extracellular environment to take up nutrients via endocytosis. Iron uptake is essential for metabolic activities and cell homeostasis. Here, we investigated the role of the endocytic system for maintaining iron homeostasis. We specifically depleted the small GTPase Rab5 in the mouse liver, causing a transient loss of the entire endo-lysosomal system. Strikingly, endosome depletion led to a fast reduction of hepatic iron levels, which was preceded by an increased abundance of the iron exporter ferroportin. Compensatory changes in livers of Rab5-depleted mice include increased expression of transferrin receptor 1 as well as reduced expression of the iron-regulatory hormone hepcidin. Serum iron indices (serum iron, free iron binding capacity and total iron binding capacity) in Rab5-KD mice were increased, consistent with an elevated splenic and hepatic iron export. Our data emphasize the critical importance of the endosomal compartments in hepatocytes to maintain hepatic and systemic iron homeostasis in vivo. The short time period (between day four and five) upon which these changes occur underscore the fast dynamics of the liver iron pool.


Asunto(s)
Endosomas/metabolismo , Hepatocitos/metabolismo , Homeostasis , Hierro/metabolismo , Lisosomas/metabolismo , Animales , Transporte Biológico , Biomarcadores , Regulación de la Expresión Génica , Hígado/metabolismo , Ratones , Bazo/metabolismo
13.
Sci Rep ; 6: 22565, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26932747

RESUMEN

Genetics-enhanced sterile insect techniques (SIT) are promising novel approaches to control Bactrocera dorsalis, the most destructive horticultural pest in East Asia and the Pacific region. To identify novel genetic agents to alter male fertility of B. dorsalis, previous studies investigated miRNA expression in testes of B. dorsalis. One miRNA, miR-8-3p was predicted to bind the 3'UTR of putative B. dorsalis mitoferrin (bmfrn). The ortholog of bmfrn in D. melanogaster is essential for male fertility. Here we show that bmfrn has all conserved amino acid residues of known mitoferrins and is most abundantly expressed in B. dorsalis testes, making miR-8-3p and mitoferrin candidates for genetics-enhanced SIT. Furthermore, using a dual-luciferase reporter system, we show in HeLa cells that miR-8-3p interacts with the 3'UTR of bmfrn. Dietary treatments of adult male flies with miR-8-3p mimic, antagomiR, or bmfrn dsRNA, altered mitoferrin expression in the testes and resulted in reduced male reproductive capacity due to reduced numbers and viability of spermatozoa. We show for the first time that a mitoferrin is regulated by a miRNA and we demonstrate miR-8-3p as well as bmfrn dsRNA to be promising novel agents that could be used for genetics-enhanced SIT.


Asunto(s)
Proteínas de Insectos/genética , MicroARNs/fisiología , Espermatogénesis , Tephritidae/metabolismo , Testículo/metabolismo , Regiones no Traducidas 3' , Animales , Células HeLa , Humanos , Masculino , ARN Mensajero/genética
14.
Free Radic Biol Med ; 85: 71-82, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25841783

RESUMEN

Friedreich's ataxia is the most important recessive ataxia in the Caucasian population. Loss of frataxin expression affects the production of iron-sulfur clusters and, therefore, mitochondrial energy production. One of the pathological consequences is an increase of iron transport into the mitochondrial compartment leading to a toxic accumulation of reactive iron. However, the mechanism underlying this inappropriate mitochondrial iron accumulation is still unknown. Control and frataxin-deficient flies were fed with an iron diet in order to mimic an iron overload and used to assess various cellular as well as mitochondrial functions. We showed that frataxin-deficient flies were hypersensitive toward dietary iron and developed an iron-dependent decay of mitochondrial functions. In the fly model exhibiting only partial frataxin loss, we demonstrated that the inability to activate ferritin translation and the enhancement of mitochondrial iron uptake via mitoferrin upregulation were likely the key molecular events behind the iron-induced phenotype. Both defects were observed during the normal process of aging, confirming their importance in the progression of the pathology. In an effort to further assess the importance of these mechanisms, we carried out genetic interaction studies. We showed that mitoferrin downregulation improved many of the frataxin-deficient conditions, including nervous system degeneration, whereas mitoferrin overexpression exacerbated most of them. Taken together, this study demonstrates the crucial role of mitoferrin dysfunction in the etiology of Friedreich's ataxia and provides evidence that impairment of mitochondrial iron transport could be an effective treatment of the disease.


Asunto(s)
Proteínas de Drosophila/fisiología , Ataxia de Friedreich/fisiopatología , Hierro/toxicidad , Animales , Modelos Animales de Enfermedad , Drosophila , Ataxia de Friedreich/genética , Expresión Génica , Proteínas de Unión a Hierro/genética , Frataxina
15.
Biophys J ; 92(12): 4391-400, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17384071

RESUMEN

Intercellular communication by means of small signal molecules coordinates gene expression among bacteria. This population density-dependent regulation is known as quorum sensing. The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti Rm1021 possesses the Sin quorum sensing system based on N-acyl homoserine lactones (AHL) as signal molecules. Here, we demonstrate that the LuxR-type regulator ExpR binds specifically to a target sequence in the sinRI locus in the presence of different AHLs with acyl side chains from 8 to 20 carbons. Dynamic force spectroscopy based on the atomic force microscope provided detailed information about the molecular mechanism of binding upon activation by six different AHLs. These single molecule experiments revealed that the mean lifetime of the bound protein-DNA complex varies depending on the specific effector molecule. The small differences between individual AHLs also had a pronounced influence on the structure of protein-DNA interaction: The reaction length of dissociation varied from 2.6 to 5.8 A. In addition, dynamic force spectroscopy experiments indicate that N-heptanoyl-DL-homoserine lactone binds to ExpR but is not able to stimulate protein-DNA interaction.


Asunto(s)
4-Butirolactona/análogos & derivados , ADN Bacteriano/química , ADN Bacteriano/genética , Percepción de Quorum/fisiología , Sinorhizobium meliloti/química , Sinorhizobium meliloti/genética , 4-Butirolactona/química , 4-Butirolactona/genética
16.
Exp Cell Res ; 305(1): 145-55, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15777795

RESUMEN

Insect hemocytes play multiple roles in immunity and carry out cellular responses like phagocytosis, encapsulation and melanization as well as producing humoral effector proteins in the first line of defense after injury and invasion of microorganisms. In this work, we used the Drosophila melanogaster hemocyte-like cell line mbn-2 and Affymetrix Drosophila GeneChips to investigate the transcriptome of a single type of immune competent tissue exposed to Gram-negative cell wall components (crude LPS) or high dose infection with live Escherichia coli. We found that gene expression profiles of both treatments overlap but show important differences in expression levels of several genes involved in immunity. In addition, cell morphology during infection was monitored and revealed distinct alterations in cell shape and adhesion. Presence of large numbers of bacteria also increased the number of cells taking on crystal cell fate. Taken together, our results indicate that hemocytes sense and respond differently to purified bacterial surface molecules and infection with live and actively growing bacteria both at the level of gene expression and in cell behavior.


Asunto(s)
Drosophila melanogaster/genética , Hemocitos/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/inmunología , Escherichia coli , Regulación de la Expresión Génica , Bacterias Gramnegativas/inmunología , Lipopolisacáridos/toxicidad , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA