Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(5): 1147-1159, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27114035

RESUMEN

The heart either hypertrophies or dilates in response to familial mutations in genes encoding sarcomeric proteins, which are responsible for contraction and pumping. These mutations typically alter calcium-dependent tension generation within the sarcomeres, but how this translates into the spectrum of hypertrophic versus dilated cardiomyopathy is unknown. By generating a series of cardiac-specific mouse models that permit the systematic tuning of sarcomeric tension generation and calcium fluxing, we identify a significant relationship between the magnitude of tension developed over time and heart growth. When formulated into a computational model, the integral of myofilament tension development predicts hypertrophic and dilated cardiomyopathies in mice associated with essentially any sarcomeric gene mutations, but also accurately predicts human cardiac phenotypes from data generated in induced-pluripotent-stem-cell-derived myocytes from familial cardiomyopathy patients. This tension-based model also has the potential to inform pharmacologic treatment options in cardiomyopathy patients.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Animales , Aorta/patología , Calcineurina/metabolismo , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica Familiar/genética , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Miofibrillas/metabolismo
2.
J Mol Cell Cardiol ; 170: 117-120, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35752207

RESUMEN

Recent advances the cardiac biomedical sciences have been propelled forward by the development and implementation of human iPSC-derived cardiac muscle. These notable successes notwithstanding, it is well recognized in the field that a major roadblock persists in the lack of full "adult cardiac muscle-like" maturation of hiPSC-CMs. This Perspective centers focus on maturation roadblocks in the essential physiological unit of muscle, the sarcomere. Stalled sarcomere maturation must be addressed and overcome before this elegant experimental platform can reach the mountaintop of making impactful contributions in disease pathogenesis, drug discovery, and in clinical regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sarcómeros , Diferenciación Celular/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocardio , Miocitos Cardíacos/fisiología
3.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555864

RESUMEN

The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.


Asunto(s)
Miocardio , Sarcómeros , Sarcómeros/metabolismo , Miocardio/metabolismo , Corazón/fisiología , Conectina/metabolismo , Miofibrillas/fisiología , Contracción Miocárdica/fisiología
4.
Stem Cells ; 38(10): 1254-1266, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32497296

RESUMEN

Advancing maturation of stem cell-derived cardiac muscle represents a major barrier to progress in cardiac regenerative medicine. Cardiac muscle maturation involves a myriad of gene, protein, and cell-based transitions, spanning across all aspects of cardiac muscle form and function. We focused here on a key developmentally controlled transition in the cardiac sarcomere, the functional unit of the heart. Using a gene-editing platform, human induced pluripotent stem cell (hiPSCs) were engineered with a drug-inducible expression cassette driving the adult cardiac troponin I (cTnI) regulatory isoform, a transition shown to be a rate-limiting step in advancing sarcomeric maturation of hiPSC cardiac muscle (hiPSC-CM) toward the adult state. Findings show that induction of the adult cTnI isoform resulted in the physiological acquisition of adult-like cardiac contractile function in hiPSC-CMs in vitro. Specifically, cTnI induction accelerated relaxation kinetics at baseline conditions, a result independent of alterations in the kinetics of the intracellular Ca2+ transient. In comparison, isogenic unedited hiPSC-CMs had no cTnI induction and no change in relaxation function. Temporal control of adult cTnI isoform induction did not alter other developmentally regulated sarcomere transitions, including myosin heavy chain isoform expression, nor did it affect expression of SERCA2a or phospholamban. Taken together, precision genetic targeting of sarcomere maturation via inducible TnI isoform switching enables physiologically relevant adult myocardium-like contractile adaptations that are essential for beat-to-beat modulation of adult human heart performance. These findings have relevance to hiPSC-CM structure-function and drug-discovery studies in vitro, as well as for potential future clinical applications of physiologically optimized hiPSC-CM in cardiac regeneration/repair.


Asunto(s)
Diferenciación Celular , Edición Génica , Células Madre Pluripotentes Inducidas/citología , Miocardio/citología , Troponina I/genética , Adulto , Línea Celular , Regulación de la Expresión Génica , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/citología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reproducibilidad de los Resultados , Troponina I/metabolismo
5.
J Mol Cell Cardiol ; 147: 49-61, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32791214

RESUMEN

The sarcomere is the functional unit of cardiac muscle, essential for normal heart function. To date, it has not been possible to study, in real time, thin filament-based activation dynamics in live cardiac muscle. We report here results from a cardiac troponin C (TnC) FRET-based biosensor integrated into the cardiac sarcomere via stoichiometric replacement of endogenous TnC. The TnC biosensor provides, for the first time, evidence of multiple thin filament activating ligands, including troponin I interfacing with TnC and cycling myosin, during a cardiac twitch. Results show that the TnC FRET biosensor transient significantly precedes that of peak twitch force. Using small molecules and genetic modifiers known to alter sarcomere activation, independently of the intracellular Ca2+ transient, the data show that the TnC biosensor detects significant effects of the troponin I switch domain as a sarcomere-activating ligand. Interestingly, the TnC biosensor also detected the effects of load-dependent altered myosin cycling, as shown by a significant delay in TnC biosensor transient inactivation during the isometric twitch. In addition, the TnC biosensor detected the effects of myosin as an activating ligand during the twitch by using a small molecule that directly alters cross-bridge cycling, independently of the intracellular Ca2+ transient. Collectively, these results aid in illuminating the basis of cardiac muscle contractile activation with implications for gene, protein, and small molecule-based strategies designed to target the sarcomere in regulating beat-to-beat heart performance in health and disease.


Asunto(s)
Técnicas Biosensibles , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miofibrillas/metabolismo , Sarcómeros/metabolismo , Animales , Femenino , Ligandos , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Miocitos Cardíacos/metabolismo , Miosinas/metabolismo , Ratas Sprague-Dawley , Troponina C/metabolismo , Troponina I/metabolismo
6.
Langmuir ; 36(13): 3393-3403, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32216370

RESUMEN

Maintaining the integrity of cell membranes is indispensable for cellular viability. Poloxamer 188 (P188), a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer with a number-average molecular weight of 8700 g/mol and containing 80% by mass PEO, protects cell membranes from various external injuries and has the potential to be used as a therapeutic agent in diverse applications. The membrane protection mechanism associated with P188 is intimately connected with how this block copolymer interacts with the lipid bilayer, the main component of a cell membrane. Here, we report the distribution of P188 in a model lipid bilayer comprising 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) using neutron reflectivity (NR) and atomic force microscopy (AFM). We also investigated the association of a PEO homopolymer (PEO8.4K; Mn = 8400 g/mol) that does not protect living cell membranes. These experiments were conducted following incubation of a 4.5 mmol/L polymer solution in a buffer that mimics physiological conditions with supported POPC bilayer membranes followed by washing with the aqueous medium. In contrast to previous reports, which dealt with P188 and PEO in salt-free solutions, both P188 and PEO8.4K penetrate into the inner portion of the lipid bilayer as revealed by NR, with approximately 30% by volume occupancy across the membrane without loss of bilayer structural integrity. These results indicate that PEO is the chemical moiety that principally drives P188 binding to bilayer membranes. No defects or phase-separated domains were observed in either P188- or PEO8.4K-incubated lipid bilayers when examined by AFM, indicating that polymer chains mingle homogeneously with lipid molecules in the bilayer. Remarkably, the breakthrough force required for penetration of the AFM tip through the bilayer membrane is unaffected by the presence of the large amount of P188 and PEO8.4K.


Asunto(s)
Membrana Dobles de Lípidos , Glicoles de Propileno , Polietilenglicoles , Polímeros
7.
J Mol Cell Cardiol ; 130: 1-9, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30849419

RESUMEN

Nucleic acid - protein interactions are critical for regulating gene activation in the nucleus. In the cytoplasm, however, potential nucleic acid-protein functional interactions are less clear. The emergence of a large and expanding number of non-coding RNAs and DNA fragments raises the possibility that the cytoplasmic nucleic acids may interact with cytoplasmic cellular components to directly alter key biological processes within the cell. We now show that both natural and synthetic nucleic acids, collectively XNAs, when introduced to the cytoplasm of live cell cardiac myocytes, markedly enhance contractile function via a mechanism that is independent of new translation, activation of the TLR-9 pathway or by altered intracellular Ca2+ cycling. Findings show a steep XNA oligo length-dependence, but not sequence dependence or nucleic acid moiety dependence, for cytoplasmic XNAs to hasten myocyte relaxation. XNAs localized to the sarcomere in a striated pattern and bound the cardiac troponin regulatory complex with high affinity in an electrostatic-dependent manner. Mechanistically, XNAs phenocopy PKA-based modified troponin to cause faster relaxation. Collectively, these data support a new role for cytoplasmic nucleic acids in directly modulating live cell cardiac performance and raise the possibility that cytoplasmic nucleic acid - protein interactions may alter functionally relevant pathways in other cell types.


Asunto(s)
Calcio/metabolismo , Citoplasma/metabolismo , ADN/metabolismo , Miocitos Cardíacos/metabolismo , ARN no Traducido/metabolismo , Sarcómeros/metabolismo , Animales , Contracción Miocárdica , Miocitos Cardíacos/citología , Ratas
8.
Langmuir ; 35(22): 7231-7241, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31117745

RESUMEN

Interactions of nonionic poly(ethylene oxide)- b-poly(propylene oxide) (PEO-PPO) block copolymers, known as Pluronics or poloxamers, with cell membranes have been widely studied for a host of biomedical applications. Herein, we report how cholesterol within phosphatidylcholine (POPC) lipid bilayer liposomes and bilayer curvature affects the binding of several PPO-PEO-PPO triblocks with varying PPO content and a tPPO-PEO diblock, where t refers to a tert-butyl end group. Pulsed-field-gradient NMR was employed to quantify the extent of copolymer associated with liposomes prepared with cholesterol concentrations ranging from 0 to 30 mol % relative to the total content of POPC and cholesterol and vesicle extrusion radii of 25, 50, or 100 nm. The fraction of polymer bound to the liposomes was extracted from NMR data on the basis of the very different mobilities of the bound and free polymers in aqueous solution. Cholesterol concentration was manipulated by varying the molar percentage of this sterol in the POPC bilayer preparation. The membrane curvature was varied by adjusting the liposome size through a conventional pore extrusion technique. Although the PPO content significantly influences the overall amount of block copolymer adsorbed to the liposome, we found that polymer binding decreases with increasing cholesterol concentration in a universal fashion, with the fraction of bound polymer dropping 10-fold between 0 and 30 mol % cholesterol relative to the total content of POPC and cholesterol. Increasing the bilayer curvature (decreasing the radius of the liposome) in the absence of cholesterol increases polymer binding between 2- and 4-fold over the range of liposome sizes studied. These results demonstrate that cholesterol plays a dominant role, and bilayer curvature has a less significant impact as the curvature decreases, on polymer-membrane association.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Polímeros/química , Espectroscopía de Resonancia Magnética , Fosfatidilcolinas/química , Glicoles de Propileno/química
9.
Biophys J ; 114(7): 1646-1656, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642034

RESUMEN

The heterotrimeric cardiac troponin complex is a key regulator of contraction and plays an essential role in conferring Ca2+ sensitivity to the sarcomere. During ischemic injury, rapidly accumulating protons acidify the myoplasm, resulting in markedly reduced Ca2+ sensitivity of the sarcomere. Unlike the adult heart, sarcomeric Ca2+ sensitivity in fetal cardiac tissue is comparatively pH insensitive. Replacement of the adult cardiac troponin I (cTnI) isoform with the fetal troponin I (ssTnI) isoform renders adult cardiac contractile machinery relatively insensitive to acidification. Alignment and functional studies have determined histidine 132 of ssTnI to be the predominant source of this pH insensitivity. Substitution of histidine at the cognate position 164 in cTnI confers the same pH insensitivity to adult cardiac myocytes. An alanine at position 164 of cTnI is conserved in all mammals, with the exception of the platypus, which expresses a proline. Prolines are biophysically unique because of their innate conformational rigidity and helix-disrupting function. To provide deeper structure-function insight into the role of the TnC-TnI interface in determining contractility, we employed a live-cell approach alongside molecular dynamics simulations to ascertain the chemo-mechanical implications of the disrupted helix 4 of cTnI where position 164 exists. This important motif belongs to the critical switch region of cTnI. Substitution of a proline at position 164 of cTnI in adult rat cardiac myocytes causes increased contractility independent of alterations in the Ca2+ transient. Free-energy perturbation calculations of cTnC-Ca2+ binding indicate no difference in cTnC-Ca2+ affinity. Rather, we propose the enhanced contractility is derived from new salt bridge interactions between cTnI helix 4 and cTnC helix A, which are critical in determining pH sensitivity and contractility. Molecular dynamics simulations demonstrate that cTnI A164P structurally phenocopies ssTnI under baseline but not acidotic conditions. These findings highlight the evolutionarily directed role of the TnI-cTnC interface in determining cardiac contractility.


Asunto(s)
Contracción Miocárdica , Troponina C/química , Troponina C/metabolismo , Troponina I/química , Troponina I/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Ratas , Ratas Sprague-Dawley
10.
Am J Physiol Heart Circ Physiol ; 315(6): H1544-H1552, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118340

RESUMEN

Cardiomyopathy is a significant contributor to morbidity and mortality in Duchenne muscular dystrophy (DMD). Membrane instability, leading to intracellular Ca2+ mishandling and overload, causes myocyte death and subsequent fibrosis in DMD cardiomyopathy. On a cellular level, cardiac myocytes from mdx mice have dysregulated Ca2+ handling, including increased resting Ca2+ and slow Ca2+ decay, especially evident under stress conditions. Sarco(endo)plasmic reticulum Ca2+ ATPase and its regulatory protein phospholamban (PLN) are potential therapeutic targets for DMD cardiomyopathy owing to their key role in regulating intracellular Ca2+ cycling. We tested the hypothesis that enhanced cardiac Ca2+ cycling would remediate cardiomyopathy caused by dystrophin deficiency. We used a genetic complementation model approach by crossing dystrophin-deficient mdx mice with PLN knockout (PLNKO) mice [termed double-knockout (DKO) mice]. As expected, adult cardiac myocytes isolated from DKO mice exhibited increased contractility and faster relaxation associated with increased Ca2+ transient peak height and faster Ca2+ decay rate compared with control mice. However, compared with wild-type, mdx, and PLNKO mice, DKO mice unexpectedly had reduced in vivo systolic and diastolic function as measured by echocardiography. Furthermore, Evans blue dye uptake was increased in DKO hearts compared with control, mdx, and PLNKO hearts, demonstrating increased membrane damage, which subsequently led to increased fibrosis in the DKO myocardium in vivo. In conclusion, despite enhanced intracellular Ca2+ handling at the myocyte level, DMD cardiomyopathy was exacerbated owing to unregulated chronic increases in Ca2+ cycling in DKO mice in vivo. These findings have potentially important implications for ongoing therapeutic strategies for the dystrophic heart. NEW & NOTEWORTHY This study examined the effects of phospholamban ablation on the pathophysiology of cardiomyopathy in dystrophin-deficient mice. In this setting, contractility and Ca2+ cycling were enhanced in isolated myocytes; however, in vivo heart function was diminished. Additionally, sarcolemmal integrity was compromised and fibrosis was increased. This is the first study, to our knowledge, examining unregulated Ca2+ cycling in the dystrophin-deficient heart. Results from this study have implications for potential therapies targeting Ca2+ handling in dystrophic cardiomyopathy. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/unregulated-ca2-cycling-exacerbates-dmd-cardiomyopathy/ .


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Calcio/metabolismo , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Células Cultivadas , Distrofina/genética , Femenino , Masculino , Ratones , Ratones Endogámicos mdx , Contracción Miocárdica , Sarcolema/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
11.
Biochim Biophys Acta ; 1863(7 Pt B): 1829-38, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26578113

RESUMEN

Human heart failure due to myocardial infarction is a major health concern. The paucity of organs for transplantation limits curative approaches for the diseased and failing adult heart. Human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) have the potential to provide a long-term, viable, regenerative-medicine alternative. Significant progress has been made with regard to efficient cardiac myocyte generation from hiPSCs. However, directing hiPSC-CMs to acquire the physiological structure, gene expression profile and function akin to mature cardiac tissue remains a major obstacle. Thus, hiPSC-CMs have several hurdles to overcome before they find their way into translational medicine. In this review, we address the progress that has been made, the void in knowledge and the challenges that remain. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Señalización del Calcio , Fármacos Cardiovasculares/uso terapéutico , Células Cultivadas , Descubrimiento de Drogas/métodos , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Genotipo , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Cardiopatías/terapia , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/trasplante , Fenotipo , Recuperación de la Función , Regeneración , Medicina Regenerativa/métodos , Sarcómeros/efectos de los fármacos , Sarcómeros/patología , Trasplante de Células Madre , Ingeniería de Tejidos/métodos
12.
Mol Pharm ; 14(7): 2333-2339, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28538101

RESUMEN

Block copolymers can be synthesized in an array of architectures and compositions to yield diverse chemical properties. The triblock copolymer Poloxamer 188 (P188), the family archetype, consisting of a hydrophobic poly(propylene oxide) core flanked by hydrophilic poly(ethylene oxide) chains, can stabilize cellular membranes during stress. However, little is known regarding the molecular basis of membrane interaction by copolymers in living organisms. By leveraging diblock architectural design, discrete end-group chemistry modifications can be tested. Here we show evidence of an anchor and chain mechanism of interaction wherein titrating poly(propylene oxide) block end group hydrophobicity directly dictates membrane interaction and stabilization. These findings, obtained in cells and animals in vivo, together with molecular dynamics simulations, provide new insights into copolymer-membrane interactions and establish the diblock copolymer molecular architecture as a valuable platform to inform copolymer-biological membrane interactions. These results have implications for membrane stabilizers in muscular dystrophy and for other biological applications involving damaged cell membranes.


Asunto(s)
Polietilenglicoles/química , Polímeros/química , Animales , Línea Celular , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Distrofia Muscular de Duchenne/metabolismo , Glicoles de Propileno/química
13.
Langmuir ; 33(44): 12624-12634, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29068209

RESUMEN

Block copolymers composed of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) have been widely used in cell membrane stabilization and permeabilization. To explore the mechanism of interaction between PPO-PEO block copolymers and lipid membranes, we have investigated how polymer structure influences the polymer-lipid bilayer association by varying the overall molecular weight, the hydrophobic and hydrophilic block lengths, and the end-group structure systematically, using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) unilamellar liposomes as model membranes. Pulsed-field-gradient NMR (PFG-NMR) was employed to probe polymer diffusion in the absence and presence of liposomes. The echo decay curves of free polymers in the absence of liposomes are single exponentials, indicative of simple translational diffusion, while in the presence of liposomes, the decays are biexponential, with the slower decay corresponding to polymers bound to liposomes. The binding percentage of polymer to the liposome was quantified by fitting the echo decay curves to a biexponential model. The NMR experiments show that increasing the total molecular weight and hydrophobicity of the polymer can significantly enhance the polymer-lipid bilayer association, as the binding percentage and liposome surface coverage both increase. We hypothesize that the hydrophobic PPO block inserts into the lipid bilayer due to the fact that little molecular exchange between bound and free polymers occurs on the time scale of the diffusion experiments. Additionally, as polymer concentration increases, the liposome surface coverage increases and approaches a limit. These results demonstrate that PFG-NMR is a simple yet powerful method to quantify interactions between polymers and lipid bilayers.


Asunto(s)
Óxido de Etileno/química , Compuestos Epoxi , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos , Polietilenglicoles , Liposomas Unilamelares
14.
Biomacromolecules ; 18(7): 2090-2101, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28535058

RESUMEN

Poloxamer 188, a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), protects cellular membranes from various stresses. Though numerous block copolymer variants exist, evaluation of alternative architecture, composition, and size has been minimal. Herein, cultured murine myoblasts are exposed to the stresses of hypotonic shock and isotonic recovery, and membrane integrity was evaluated by quantifying release of lactate dehydrogenase. Comparative evaluation of a systematic set of PEO-PPO diblock and PEO-PPO-PEO triblock copolymers demonstrates that the diblock architecture can be protective in vitro. Short PPO blocks hinder protection with >9 PPO units needed for protection at 150 µM and >16 units needed at 14 µM. Addition of a tert-butyl end group enhances protection at reduced concentration. When the end group and PPO length are fixed, increasing the PEO length improves protection. This systematic evaluation establishes a new in vitro screening tool for evaluating membrane-sealing amphiphiles and provides mechanistic insight to guide future copolymer design for membrane stabilization in vivo.


Asunto(s)
Mioblastos/metabolismo , Presión Osmótica/efectos de los fármacos , Polietilenglicoles/farmacología , Polipropilenos/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ratones , Mioblastos/citología , Polietilenglicoles/química , Polipropilenos/química
15.
Biophys J ; 110(9): 2094-105, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166817

RESUMEN

Cardiac gene delivery of parvalbumin (Parv), an EF-hand Ca(2+) buffer, has been studied as a therapeutic strategy for diastolic heart failure, in which slow Ca(2+) reuptake is an important contributor. A limitation of wild-type (WT) Parv is the significant trade-off between faster relaxation and blunted contraction amplitude, occurring because WT-Parv sequesters Ca(2+) too early in the cardiac cycle and prematurely truncates sarcomere shortening in the facilitation of rapid relaxation. We recently demonstrated that an E → Q substitution (ParvE101Q) at amino acid 12 of the EF-hand Ca(2+)/Mg(2+) binding loop disrupts bidentate Ca(2+) binding, reducing Ca(2+) affinity by 99-fold and increasing Mg(2+) affinity twofold. ParvE101Q caused faster relaxation and not only preserved contractility, but unexpectedly increased it above untreated myocytes. To gain mechanistic insight into the increased contractility, we focused here on amino acid 12 of the EF-hand motif. We introduced an E → D substitution (ParvE101D) at this site, which converts bidentate Ca(2+) coordination to monodentate coordination. ParvE101D decreased Ca(2+) affinity by 114-fold and increased Mg(2+) affinity 28-fold compared to WT-Parv. ParvE101D increased contraction amplitude compared to both untreated myocytes and myocytes with ParvE101Q, with limited improvement in relaxation. Additionally, ParvE101D increased spontaneous contractions after pacing stress. ParvE101D also increased Ca(2+) transient peak height and was diffusely localized around the Z-line of the sarcomere, suggesting a Ca(2+)-dependent mechanism of enhanced contractility. Sarcoplasmic reticulum Ca(2+) load was not changed with ParvE101D, but postpacing Ca(2+) waves were increased. Together, these data show that inverted Ca(2+)/Mg(2+) binding affinities of ParvE101D increase myocyte contractility through a Ca(2+)-dependent mechanism without altering sarcoplasmic reticulum Ca(2+) load and by increasing unstimulated contractions and Ca(2+) waves. ParvE101D provides mechanistic insight into how changes in the Ca(2+)/Mg(2+) binding affinities of parvalbumin's EF-hand motif alter function of cardiac myocytes. These data are informative in developing new Ca(2+) buffering strategies for the failing heart.


Asunto(s)
Sustitución de Aminoácidos , Motivos EF Hand , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Parvalbúminas/química , Parvalbúminas/metabolismo , Animales , Calcio/metabolismo , Femenino , Humanos , Espacio Intracelular/metabolismo , Magnesio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Parvalbúminas/genética , Conformación Proteica , Ratas , Relación Estructura-Actividad
16.
Am J Physiol Heart Circ Physiol ; 311(1): H36-43, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199134

RESUMEN

The sarcomere is the functional unit of the heart. Alterations in sarcomere activation lead to disease states such as hypertrophic and restrictive cardiomyopathy (HCM/RCM). Mutations in many of the sarcomeric genes are causal for HCM/RCM. In most cases, these mutations result in increased Ca(2+) sensitivity of the sarcomere, giving rise to altered systolic and diastolic function. There is emerging evidence that small-molecule sarcomere neutralization is a potential therapeutic strategy for HCM/RCM. To pursue proof-of-concept, W7 was used here because of its well-known Ca(2+) desensitizer biochemical effects at the level of cardiac troponin C. Acute treatment of adult cardiac myocytes with W7 caused a dose-dependent (1-10 µM) decrease in contractility in a Ca(2+)-independent manner. Alkalosis was used as an in vitro experimental model of acquired heightened Ca(2+) sensitivity, resulting in increased live cell contractility and decreased baseline sarcomere length, which were rapidly corrected with W7. As an inherited cardiomyopathy model, R193H cardiac troponin I (cTnI) transgenic myocytes showed significant decreased baseline sarcomere length and slowed relaxation that were rapidly and dose-dependently corrected by W7. Langendorff whole heart pacing stress showed that R193H cTnI transgenic hearts had elevated end-diastolic pressures at all pacing frequencies compared with hearts from nontransgenic mice. Acute treatment with W7 rapidly restored end-diastolic pressures to normal values in R193H cTnI hearts, supporting a sarcomere intrinsic mechanism of dysfunction. The known off-target effects of W7 notwithstanding, these results provide further proof-of-concept that small-molecule-based sarcomere neutralization is a potential approach to remediate hyper-Ca(2+)-sensitive sarcomere function.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Cardiomiopatías/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sarcómeros/efectos de los fármacos , Sulfonamidas/farmacología , Alcalosis/metabolismo , Alcalosis/fisiopatología , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Estimulación Cardíaca Artificial , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Predisposición Genética a la Enfermedad , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Fenotipo , Ratas , Sarcómeros/metabolismo , Troponina I/genética , Función Ventricular Izquierda/efectos de los fármacos , Presión Ventricular/efectos de los fármacos
17.
J Pharmacol Exp Ther ; 359(1): 194-206, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27432892

RESUMEN

The renal outer medullary potassium (ROMK) channel, located at the apical surface of epithelial cells in the thick ascending loop of Henle and cortical collecting duct, contributes to salt reabsorption and potassium secretion, and represents a target for the development of new mechanism of action diuretics. This idea is supported by the phenotype of antenatal Bartter's syndrome type II associated with loss-of-function mutations in the human ROMK channel, as well as, by cardiovascular studies of heterozygous carriers of channel mutations associated with type II Bartter's syndrome. Although the pharmacology of ROMK channels is still being developed, channel inhibitors have been identified and shown to cause natriuresis and diuresis, in the absence of any significant kaliuresis, on acute oral dosing to rats or dogs. Improvements in potency and selectivity have led to the discovery of MK-7145 [5,5'-((1R,1'R)-piperazine-1,4-diylbis(1-hydroxyethane-2,1-diyl))bis(4-methylisobenzofuran-1(3H)-one)], a potential clinical development candidate. In spontaneously hypertensive rats, oral dosing of MK-7145 causes dose-dependent lowering of blood pressure that is maintained during the entire treatment period, and that displays additive/synergistic effects when administered in combination with hydrochlorothiazide or candesartan, respectively. Acute or chronic oral administration of MK-7145 to normotensive dogs led to dose-dependent diuresis and natriuresis, without any significant urinary potassium losses or changes in plasma electrolyte levels. Elevations in bicarbonate and aldosterone were found after 6 days of dosing. These data indicate that pharmacological inhibition of ROMK has potential as a new mechanism for the treatment of hypertension and/or congestive heart failure. In addition, Bartter's syndrome type II features are manifested on exposure to ROMK inhibitors.


Asunto(s)
Síndrome de Bartter/fisiopatología , Benzofuranos/farmacología , Presión Sanguínea/efectos de los fármacos , Fenotipo , Piperazinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Animales , Síndrome de Bartter/tratamiento farmacológico , Bencimidazoles/farmacología , Benzofuranos/uso terapéutico , Compuestos de Bifenilo , Perros , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Células HEK293 , Humanos , Hidroclorotiazida/farmacología , Masculino , Piperazinas/uso terapéutico , Bloqueadores de los Canales de Potasio/uso terapéutico , Ratas , Tetrazoles/farmacología
18.
Am J Physiol Regul Integr Comp Physiol ; 309(4): R368-77, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26017496

RESUMEN

The hearts of mammalian hibernators maintain contractile function in the face of severe environmental stresses during winter heterothermy. To enable survival in torpor, hibernators regulate the expression of numerous genes involved in excitation-contraction coupling, metabolism, and stress response pathways. Understanding the basis of this transition may provide new insights into treatment of human cardiac disease. Few studies have investigated hibernator heart performance during both summer active and winter torpid states, and seasonal comparisons of whole heart function are generally lacking. We investigated the force-frequency relationship and the response to ex vivo ischemia-reperfusion in intact isolated hearts from 13-lined ground squirrels (Ictidomys tridecemlineatus) in the summer (active, July) and winter (torpid, January). In standard euthermic conditions, we found that winter hearts relaxed more rapidly than summer hearts at low to moderate pacing frequencies, even though systolic function was similar in both seasons. Proteome data support the hypothesis that enhanced Ca(2+) handling in winter torpid hearts underlies the increased relaxation rate. Additionally, winter hearts developed significantly less rigor contracture during ischemia than summer hearts, while recovery during reperfusion was similar in hearts between seasons. Winter torpid hearts have an increased glycogen content, which likely reduces development of rigor contracture during the ischemic event due to anaerobic ATP production. These cardioprotective mechanisms are important for the hibernation phenotype and highlight the resistance to hypoxic stress in the hibernator.


Asunto(s)
Metabolismo Energético , Hibernación , Contracción Miocárdica , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Sciuridae/metabolismo , Función Ventricular Izquierda , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio , Estimulación Cardíaca Artificial , Modelos Animales de Enfermedad , Femenino , Glucógeno/metabolismo , Masculino , Proteínas Musculares/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Fenotipo , Proteómica/métodos , Estaciones del Año , Factores de Tiempo , Presión Ventricular
19.
Biophys J ; 106(10): 2105-14, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24853739

RESUMEN

Troponin I (TnI) is the molecular switch of the sarcomere. Cardiac myocytes express two isoforms of TnI during development. The fetal heart expresses the slow skeletal TnI (ssTnI) isoform and shortly after birth ssTnI is completely and irreversibly replaced by the adult cardiac TnI (cTnI) isoform. These two isoforms have important functional differences; broadly, ssTnI is a positive inotrope, especially under acidic/hypoxic conditions, whereas cTnI facilitates faster relaxation performance. Evolutionary directed changes in cTnI sequence suggest cTnI evolved to favor relaxation performance in the mammalian heart. To investigate the mechanism, we focused on several notable TnI isoform and trans-species-specific residues located in TnI's helix 4 using structure/function and molecular dynamics analyses. Gene transduction of adult cardiac myocytes by cTnIs with specific helix 4 ssTnI substitutions, Q157R/A164H/E166V/H173N (QAEH), and A164H/H173N (AH), were investigated. cTnI QAEH is similar in these four residues to ssTnI and nonmammalian chordate cTnIs, whereas cTnI AH is similar to fish cTnI in these four residues. In comparison to mammalian cTnI, cTnI QAEH and cTnI AH showed increased contractility and slowed relaxation, which functionally mimicked ssTnI expressing myocytes. cTnI QAEH molecular dynamics simulations demonstrated altered intermolecular interactions between TnI helix 4 and cTnC helix A, specifically revealing a new, to our knowledge, electrostatic interaction between R171of cTnI and E15 of cTnC, which structurally phenocopied the ssTnI conformation. Free energy perturbation calculation of cTnC Ca(2+) binding for these conformations showed relative increased calcium binding for cTnI QAEH compared to cTnI. Taken together, to our knowledge, these new findings provide evidence that the evolutionary-directed coordinated acquisition of residues Q157, A164, E166, H173 facilitate enhanced relaxation performance in mammalian adult cardiac myocytes.


Asunto(s)
Miocitos Cardíacos/metabolismo , Troponina I/química , Troponina I/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Calcio/metabolismo , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Ratas , Termodinámica , Transfección , Troponina I/genética
20.
J Mol Cell Cardiol ; 67: 26-37, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362314

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury is a major clinical problem leading to cardiac dysfunction and myocyte death. It is widely held that I/R causes damage to membrane phospholipids, and is a significant mechanism of cardiac I/R injury. Molecular dissection of sarcolemmal damage in I/R, however, has been difficult to address experimentally. We studied here cardiac I/R injury under conditions targeting gain- or loss-of sarcolemma integrity. To implement gain-in-sarcolemma integrity during I/R, synthetic copolymer-based sarcolemmal stabilizers (CSS), including Poloxamer 188 (P188), were used as a tool to directly stabilize the sarcolemma. Consistent with the hypothesis of sarcolemmal stabilization, cellular markers of necrosis and apoptosis evident in untreated myocytes were fully blocked in sarcolemma stabilized myocytes. Unexpectedly, sarcolemmal stabilization of adult cardiac myocytes did not affect the status of myocyte-generated oxidants or lipid peroxidation in two independent assays. We also investigated the loss of sarcolemmal integrity using two independent genetic mouse models, dystrophin-deficient mdx or dysferlin knockout (Dysf KO) mice. Both models of sarcolemmal loss-of-function were severely affected by I/R injury ex vivo, and this was lessened by CSS. In vivo studies also showed that infarct size was significantly reduced in CSS-treated hearts. Mechanistically, these findings support a model whereby I/R-mediated increased myocyte oxidative stress is uncoupled from myocyte injury. Because the sarcolemma stabilizers used here do not transit across the myocyte membrane this is evidence that intracellular targets of oxidants are not sufficiently altered to affect cell death when sarcolemma integrity is preserved by synthetic stabilizers. These findings, in turn, suggest that sarcolemma destabilization, and consequent Ca(2+) mishandling, as a focal initiating mechanism underlying myocardial I/R injury.


Asunto(s)
Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/patología , Estrés Oxidativo , Sarcolema/metabolismo , Animales , Bioensayo , Caspasa 3/metabolismo , Supervivencia Celular , Células Cultivadas , Ratones Endogámicos C57BL , Modelos Cardiovasculares , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA