Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioconjug Chem ; 29(2): 538-545, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29378403

RESUMEN

Pretargeting strategies have gained popularity for the in vivo imaging and therapy of cancer by combining antibodies with small molecule radioligands. In vivo recombination of both moieties can be achieved using the bioorthogonal inverse electron demand Diels-Alder (IEDDA) chemistry between tetrazine (Tz) and trans-cyclooctene (TCO). An issue that arises with pretargeting strategies is that while part of the antibody dose accumulates at antigen-expressing tumor tissue, there is a significant portion of the injected antibody that remains in circulation, causing a reduction in target-to-background ratios. Herein, we report the development of a novel TCO scavenger, the masking agent DP-Tz. DP-Tz is based on Tz-modified dextran polymers (DP, MW = 0.5-2 MDa). Large dextran polymers were reported to exhibit low penetration of tumor vasculature and appeared nontoxic, nonimmunogenic, and easily modifiable. Our newly developed masking agent deactivates the remaining TCO-moieties on the circulating mAbs yet does not impact the tumor uptake of the Tz-radioligand. In pretargeting studies utilizing a 68Ga-labeled tetrazine radioligand ([68Ga]Ga-NOTA-PEG11-tetrazine), DP-Tz constructs (Tz/DP ratios of 62-254) significantly increased TTB ratios from 0.8 ± 0.3 (control cohorts) to up to 5.8 ± 2.3 at 2 h postinjection. Tumor tissue delineation in PET imaging experiments employing DP-Tz is significantly increased compared to control. Uptake values of other significant organs, such as heart, lungs, pancreas, and stomach, were decreased on average by 2-fold when using DP-Tz. Overall, pretargeting experiments utilizing DP-Tz showed significantly improved tumor delineation, enhanced PET image quality, and reduced uptake in vital organs. We believe that this new masking agent is a powerful new addition to the IEDDA-based pretargeting tool box and, due to its properties, an excellent candidate for clinical translation.


Asunto(s)
Anticuerpos Monoclonales/química , Ciclooctanos/análogos & derivados , Dextranos/química , Inmunoconjugados/química , Polímeros/química , Radiofármacos/química , Animales , Anticuerpos Monoclonales/farmacocinética , Reacción de Cicloadición , Ciclooctanos/farmacocinética , Dextranos/farmacocinética , Inmunoconjugados/farmacocinética , Ratones Desnudos , Polímeros/farmacocinética , Radiofármacos/farmacocinética , Distribución Tisular
2.
Bioconjug Chem ; 27(12): 2791-2807, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27787983

RESUMEN

The advent of click chemistry has had a profound influence on almost all branches of chemical science. This is particularly true of radiochemistry and the synthesis of agents for positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted radiotherapy. The selectivity, ease, rapidity, and modularity of click ligations make them nearly ideally suited for the construction of radiotracers, a process that often involves working with biomolecules in aqueous conditions with inexorably decaying radioisotopes. In the following pages, our goal is to provide a broad overview of the first 10 years of research at the intersection of click chemistry and radiochemistry. The discussion will focus on four areas that we believe underscore the critical advantages provided by click chemistry: (i) the use of prosthetic groups for radiolabeling reactions, (ii) the creation of coordination scaffolds for radiometals, (iii) the site-specific radiolabeling of proteins and peptides, and (iv) the development of strategies for in vivo pretargeting. Particular emphasis will be placed on the four most prevalent click reactions-the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand Diels-Alder reaction (IEDDA), and the Staudinger ligation-although less well-known click ligations will be discussed as well. Ultimately, it is our hope that this review will not only serve to educate readers but will also act as a springboard, inspiring synthetic chemists and radiochemists alike to harness click chemistry in even more innovative and ambitious ways as we embark upon the second decade of this fruitful collaboration.


Asunto(s)
Química Clic/métodos , Radioquímica/métodos , Animales , Catálisis , Cobre/química , Reacción de Cicloadición , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/metabolismo , Marcaje Isotópico , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Péptidos/química
3.
Bioconjug Chem ; 27(2): 298-301, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26479967

RESUMEN

A first-of-its-kind (18)F pretargeted PET imaging approach based on the bioorthogonal inverse electron demand Diels-Alder (IEDDA) reaction between tetrazine (Tz) and trans-cyclooctene (TCO) is presented. As proof-of-principle, a TCO-bearing immunoconjugate of the anti-CA19.9 antibody 5B1 and an Al[(18)F]NOTA-labeled tetrazine radioligand were harnessed for the visualization of CA19.9-expressing BxPC3 pancreatic cancer xenografts. Biodistribution and (18)F-PET imaging data clearly demonstrate that this methodology effectively delineates tumor mass with activity concentrations up to 6.4 %ID/g at 4 h after injection of the radioligand.


Asunto(s)
Ciclooctanos/química , Radioisótopos de Flúor/química , Inmunoconjugados/química , Neoplasias Pancreáticas/diagnóstico , Tomografía de Emisión de Positrones/métodos , Animales , Antígenos de Carbohidratos Asociados a Tumores/análisis , Química Clic/métodos , Reacción de Cicloadición/métodos , Ciclooctanos/farmacocinética , Radioisótopos de Flúor/farmacocinética , Humanos , Inmunoconjugados/farmacocinética , Ratones , Páncreas/patología , Neoplasias Pancreáticas/patología , Radiofármacos/química , Radiofármacos/farmacocinética
4.
J Labelled Comp Radiopharm ; 57(5): 333-7, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24692121

RESUMEN

This review article considers 2'-labelled and 3'-labelled nucleosides, which are of great importance as positron emission tomography (PET) probes in clinical diagnostics and PET research. Although the radiochemical preparation of several [(18)F]-labelled nucleosides such as [(18)F]fluorothymidine or [(18)F](fluoroarabinofuranosyl)cytosine has been accomplished within the last two decades, a number of potentially interesting nucleoside-based biomarkers are not yet available for automated good manufacturing practice production due to the lack of fast and efficient synthetic methods for late-stage [(18)F]-introduction. In order to meet recent demands for new PET-based biomarkers in various clinical applications, appropriate precursors that can easily be fluorinated and deprotected need to be developed.


Asunto(s)
Medios de Contraste/síntesis química , Radioisótopos de Flúor/química , Nucleósidos/química , Tomografía de Emisión de Positrones/métodos , Animales , Humanos , Aumento de la Imagen/métodos , Marcaje Isotópico/métodos , Imagen Molecular/métodos , Radiofármacos/síntesis química
5.
J Labelled Comp Radiopharm ; 57(11): 637-44, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25257474

RESUMEN

(18) F-FAC (1-(2'-deoxy-2'-[(18) F]fluoro-ß-D-arabinofuranosyl)-cytosine) is an important 2'-fluoro-nucleoside-based positron emission tomography (PET) tracer that has been used for in vivo prediction of response to the widely used cancer chemotherapy drug gemcitabine. Previously reported synthetic routes to (18) F-FAC have relied on early introduction of the (18) F radiolabel prior to attachment to protected cytosine base. Considering the (18) F radiochemical half-life (110 min) and the technical challenges of multi-step syntheses on PET radiochemistry modular systems, late-stage radiofluorination is preferred for reproducible and reliable radiosynthesis with in vivo applications. Herein, we report the first late-stage radiosynthesis of (18) F-FAC. Cytidine derivatives with leaving groups at the 2'-position are particularly prone to undergo anhydro side-product formation upon heating because of their electron density at the 2-carbonyl pyrimidone oxygen. Our rationally developed fluorination precursor showed an improved reactivity-to-stability ratio at elevated temperatures. (18) F-FAC was obtained in radiochemical yields of 4.3-5.5% (n = 8, decay-corrected from end of bombardment), with purities ≥98% and specific activities ≥63 GBq/µmol. The synthesis time was 168 min.


Asunto(s)
Citarabina/análogos & derivados , Radiofármacos/síntesis química , Citarabina/síntesis química
6.
Front Chem ; 10: 898692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017165

RESUMEN

Prostate-specific membrane antigen (PSMA) binding tracers are promising agents for the targeting of prostate tumors. To further optimize the clinically established radiopharmaceutical PSMA-617, novel PSMA ligands for prostate cancer endoradiotherapy were developed. A series of PSMA binding tracers that comprise a benzyl group at the chelator moiety were obtained by solid-phase synthesis. The compounds were labeled with 68Ga or 177Lu. Competitive cell-binding assays and internalization assays were performed using the cell line C4-2, a subline of the PSMA positive cell line LNCaP (human lymph node carcinoma of the prostate). Positron emission tomography (PET) imaging and biodistribution studies were conducted in a C4-2 tumor bearing BALB/c nu/nu mouse model. All 68Ga-labeled ligands were stable in human serum over 2 h; 177Lu-CA030 was stable over 72 h. The PSMA ligands revealed inhibition potencies [Ki] (equilibrium inhibition constants) between 4.8 and 33.8 nM. The percentage of internalization of the injected activity/106 cells of 68Ga-CA028, 68Ga-CA029, and 68Ga-CA030 was 41.2 ± 2.7, 44.3 ± 3.9, and 53.8 ± 5.4, respectively; for the comparator 68Ga-PSMA-617, 15.5 ± 3.1 was determined. Small animal PET imaging of the compounds showed a high tumor-to-background contrast. Organ distribution studies revealed high specific uptake in the tumor, that is, approximately 34.4 ± 9.8% of injected dose per gram (%ID/g) at 1 h post injection for 68Ga-CA028. At 1 h p.i., 68Ga-CA028 and 68Ga-CA030 demonstrated lower kidney uptake than 68Ga-PSMA-617, but at later time points, kidney time-activity curves converge. In line with the preclinical data, first diagnostic PET imaging using 68Ga-CA028 and 68Ga-CA030 revealed high-contrast detection of bone and lymph node lesions in patients with metastatic prostate cancer. The novel PSMA ligands, in particular CA028 and CA030, are promising agents for targeting PSMA-positive tumor lesions as shown in the preclinical evaluation and in a first patient, respectively. Thus, clinical translation of 68Ga-CA028 and 68Ga/177Lu-CA030 for diagnostics and endoradiotherapy of prostate cancer in larger cohorts of patients is warranted.

7.
Mol Imaging Biol ; 23(3): 340-349, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33156495

RESUMEN

PURPOSE: Metastatic breast cancer is the second leading cause of cancer-related death in women. The 5-year survival rate for metastatic breast cancer has remained near 26.9 % for over a decade. The recruitment of hematopoietic stem cells with high expression of the vascular endothelial growth factor receptor 1 (VEGFR-1) has been implicated in early stages of metastasis formation. We propose the use of an 18F-labeled single-chain version of VEGF121, re-engineered to be selective for VEGFR-1 (scVR1), as a positron emission tomography (PET) imaging agent to non-invasively image early-stage metastases. PROCEDURES: scVR1 was 18F-labeled via a biorthogonal click reaction between site-specifically trans-cyclooctene functionalized scVR1 and an Al18F labeled tetrazine-NODA (1,4,7-triazacyclononane-1,4-diiacetic acid). The [18F]AlF-NODA-scVR1 was purified using a PD10 column and subsequently analyzed on HPLC to determine radiochemical purity. Animal experiments were performed in 6-8-week-old female BALB/c mice bearing orthotopic primary 4T1 breast tumors or 4T1 metastatic lesions. The [18F]AlF-NODA-scVR1 tracer was administered via tail vein injection; PET imaging and ex vivo analysis was performed 2 h post-injection. RESULTS: The [18F]AlF-NODA-scVR1 was prepared with a 98.2 ± 1.5 % radiochemical purity and an apparent molar activity of 7.5 ± 1.2 GBq/µmol. The specific binding of scVR1 to VEGFR-1 was confirmed via bead-based assay. The ex vivo biodistribution showed tumor uptake of 3.5 ± 0.5 % ID/g and was readily observable in PET images. Metastasis formation was detected with [18F]AlF-NODA-scVR1 tracer showing colocalization with bioluminescent imaging as well as ex vivo autoradiography and immunofluorescent staining of VEGFR-1. CONCLUSIONS: The diagnostic capabilities of the [18F]AlF-NODA-scVR1 PET tracer was confirmed in both orthotopic and metastatic murine cancer models. These results support the potential use of [18F]AlF-NODA-scVR1 as a PET tracer that could image metastases, providing clinicians with an additional tool to assess a patient's need for adjuvant therapies.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Radioisótopos de Flúor/química , Células Madre Hematopoyéticas/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Mutación , Metástasis de la Neoplasia , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Tomografía de Emisión de Positrones
8.
J Med Chem ; 60(19): 8201-8217, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-28857566

RESUMEN

Pretargeting offers a way to enhance target specificity while reducing off-target radiation dose to healthy tissue during payload delivery. We recently reported the development of an 18F-based pretargeting strategy predicated on the inverse electron demand Diels-Alder reaction as well as the use of this approach to visualize pancreatic tumor tissue in vivo as early as 1 h postinjection. Herein, we report a comprehensive structure: pharmacokinetic relationship study of a library of 25 novel radioligands that aims to identify radiotracers with optimal pharmacokinetic and dosimetric properties. This investigation revealed key relationships between molecular structure and in vivo behavior and produced two lead candidates exhibiting rapid tumor targeting with high target-to-background activity concentration ratios at early time points. We believe this knowledge to be of high value for the design and clinical translation of next-generation pretargeting agents for the diagnosis and treatment of disease.


Asunto(s)
Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radiofármacos/química , Radiofármacos/farmacología , Animales , Descubrimiento de Drogas , Radioisótopos de Flúor , Humanos , Tomografía de Emisión de Positrones , Radiometría , Radiofármacos/farmacocinética , Ratas , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Nucl Med ; 57(11): 1811-1816, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27390161

RESUMEN

Vascular endothelial growth factor-A (VEGF-A) acts via 2 vascular endothelial growth factor receptors, VEGFR-1 and VEGFR-2, that play important and distinct roles in tumor biology. We reasoned that selective imaging of these receptors could provide unique information for diagnostics and for monitoring and optimizing responses to anticancer therapy, including antiangiogenic therapy. Herein, we report the development of 2 first-in-class 89Zr-labeled PET tracers that enable the selective imaging of VEGFR-1 and VEGFR-2. METHODS: Functionally active mutants of scVEGF (an engineered single-chain version of pan-receptor VEGF-A with an N-terminal cysteine-containing tag for site-specific conjugation), named scVR1 and scVR2 with enhanced affinity to, respectively, VEGFR-1 and VEGFR-2, were constructed. Parental scVEGF and its receptor-specific mutants were site-specifically derivatized with the 89Zr chelator desferroxamine B via a 3.4-kDa PEG linker. 89Zr labeling of the desferroxamine B conjugates furnished scV/Zr, scVR1/Zr, and scVR2/Zr tracers with high radiochemical yield (>87%), high specific activity (≥9.8 MBq/nmol), and purity (>99%). Tracers were tested in an orthotopic breast cancer model using 4T1luc-bearing syngeneic BALB/c mice. For testing tracer specificity, tracers were coinjected with an excess of cold proteins of the same or opposite receptor specificity or pan-receptor scVEGF. PET imaging, biodistribution, and dosimetry studies in mice, as well as immunohistochemical analysis of harvested tumors, were performed. RESULTS: All tracers rapidly accumulated in orthotopic 4T1luc tumors, allowing for the successful PET imaging of the tumors as early as 2 h after injection. Blocking experiments with an excess of pan-receptor or receptor-specific cold proteins indicated that more than 80% of tracer tumor uptake is VEGFR-mediated, whereas uptake in all major organs is not affected by blocking within the margin of error. Critically, blocking experiments indicated that VEGFR-mediated tumor uptake of scVR1/Zr and scVR2/Zr was mediated exclusively by the corresponding receptor, VEGFR-1 or VEGFR-2, respectively. In contrast, uptake of pan-receptor scV/Zr was mediated by both VEGFR-1 and VEGFR-2 at an approximately 2:1 ratio. CONCLUSION: First-in-class selective PET tracers for imaging VEGFR-1 and VEGFR-2 were constructed and successfully validated in an orthotopic murine tumor model.


Asunto(s)
Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacocinética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Circonio/farmacocinética , Animales , Línea Celular Tumoral , Marcaje Isotópico , Isótopos/química , Isótopos/farmacocinética , Ratones , Ratones Endogámicos BALB C , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Ingeniería de Proteínas/métodos , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factor A de Crecimiento Endotelial Vascular/genética , Circonio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA