Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(9): 2767-2782, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37481701

RESUMEN

The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.


Asunto(s)
Síndrome de Rett , Humanos , Ratones , Animales , Síndrome de Rett/genética , Síndrome de Rett/terapia , Síndrome de Rett/metabolismo , Primates/genética , Terapia Genética , Mutación
2.
Glia ; 71(2): 350-365, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36213964

RESUMEN

Patient diversity and unknown disease cause are major challenges for drug development and clinical trial design for amyotrophic lateral sclerosis (ALS). Transgenic animal models do not adequately reflect the heterogeneity of ALS. Direct reprogramming of patient fibroblasts to neuronal progenitor cells and subsequent differentiation into patient astrocytes allows rapid generation of disease relevant cell types. Thus, this methodology can facilitate compound testing in a diverse genetic background resulting in a more representative population for therapeutic evaluation. Here, we used established co-culture assays with motor neurons and reprogrammed patient skin-derived astrocytes (iAs) to evaluate the effects of (SP-4-2)-[[2,2'-(1,2-dimethyl-1,2-ethanediylidene)bis[N-methylhydrazinecarbothioamidato-κN2 ,κS]](2-)]-copper (CuATSM), currently in clinical trial for ALS in Australia. Pretreatment of iAs with CuATSM had a differential effect on neuronal survival following co-culture with healthy motor neurons. Using this assay, we identified responding and non-responding cell lines for both sporadic and familial ALS (mutant SOD1 and C9ORF72). Importantly, elevated mitochondrial respiration was the common denominator in all CuATSM-responders, a metabolic phenotype not observed in non-responders. Pre-treatment of iAs with CuATSM restored mitochondrial activity to levels comparable to healthy controls. Hence, this metabolic parameter might allow selection of patient subpopulations best suited for CuATSM treatment. Moreover, CuATSM might have additional therapeutic value for mitochondrial disorders. Enhanced understanding of patient-specific cellular and molecular profiles could help improve clinical trial design in the future.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Astrocitos/metabolismo , Neuronas Motoras , Técnicas de Cocultivo , Superóxido Dismutasa-1/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982654

RESUMEN

Neutralizing antibody (NAb) activity against the viral capsid of adeno-associated viral (AAV) vectors decreases transduction efficiency, thus limiting transgene expression. Several reports have mentioned a variation in NAb prevalence according to age, AAV serotype, and, most importantly, geographic location. There are currently no reports specifically describing the anti-AAV NAb prevalence in Latin America. Here, we describe the prevalence of NAb against different serotypes of AAV vectors (AAV1, AAV2, and AAV9) in Colombian patients with heart failure (HF) (referred to as cases) and healthy individuals (referred to as controls). The levels of NAb were evaluated in serum samples of 60 subjects from each group using an in vitro inhibitory assay. The neutralizing titer was reported as the first dilution inhibiting ≥50% of the transgene signal, and the samples with neutralizing titers at ≥1:50 dilution were considered positive. The prevalence of NAb in the case and control groups were similar (AAV2: 43% and 45%, respectively; AAV1 33.3% in each group; AAV9: 20% and 23.2%, respectively). The presence of NAb for two or more of the serotypes analyzed was observed in 25% of the studied samples, with the largest amount in the positive samples for AAV1 (55-75%) and AAV9 (93%), suggesting serial exposures, cross-reactivity, or coinfection. Moreover, patients in the HF group exhibited more common combined seropositivity for NAb against AAV1 d AAV9 than those in the control group (91.6% vs. 35.7%, respectively; p = 0.003). Finally, exposure to toxins was significantly associated with the presence of NAb in all regression models. These results constitute the first report of the prevalence of NAb against AAV in Latin America, being the first step to implementing therapeutic strategies based on AAV vectors in this population in our region.


Asunto(s)
Anticuerpos Neutralizantes , Insuficiencia Cardíaca , Humanos , Serogrupo , América Latina , Anticuerpos Antivirales , Dependovirus/genética , Prevalencia , Insuficiencia Cardíaca/epidemiología , Vectores Genéticos/genética , Transducción Genética
4.
Acta Neuropathol ; 144(5): 939-966, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36121477

RESUMEN

ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset.


Asunto(s)
Esclerosis Amiotrófica Lateral , Estrés del Retículo Endoplásmico , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Calcio/metabolismo , Demencia Frontotemporal/genética , Proteínas HSP70 de Choque Térmico , Humanos , Proteínas de la Membrana , Neuronas Motoras/patología , Polirribonucleótidos
5.
Mol Ther ; 29(1): 162-175, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33010819

RESUMEN

CLN8 disease is a rare form of neuronal ceroid lipofuscinosis caused by biallelic mutations in the CLN8 gene, which encodes a transmembrane endoplasmic reticulum protein involved in trafficking of lysosomal enzymes. CLN8 disease patients present with myoclonus, tonic-clonic seizures, and progressive declines in cognitive and motor function, with many cases resulting in premature death early in life. There are currently no treatments that can cure the disease or substantially slow disease progression. Using a mouse model of CLN8 disease, we tested the safety and efficacy of an intracerebroventricularly (i.c.v.) delivered self-complementary adeno-associated virus serotype 9 (scAAV9) gene therapy vector driving expression of human CLN8. A single neonatal injection was safe and well tolerated, resulting in robust transgene expression throughout the CNS from 4 to 24 months, reducing histopathological and behavioral hallmarks of the disease and restoring lifespan from 10 months in untreated animals to beyond 24 months of age in treated animals. While it is unclear whether some of these behavioral improvements relate to preserved visual function, improvements in learning/memory, or other central or peripheral benefits, these results demonstrate, by far, the most successful degree of rescue reported in an animal model of CLN8 disease, and they support further development of gene therapy for this disorder.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Animales , Conducta Animal , Modelos Animales de Enfermedad , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Transgenes , Resultado del Tratamiento
6.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430666

RESUMEN

Despite intense research into the multifaceted etiology of neurodegenerative diseases (ND), they remain incurable. Here we provide a brief overview of several major ND and explore novel therapeutic approaches. Although the cause (s) of ND are not fully understood, the accumulation of misfolded/aggregated proteins in the brain is a common pathological feature. This aggregation may initiate disruption of Ca++ signaling, which is an early pathological event leading to altered dendritic structure, neuronal dysfunction, and cell death. Presently, ND gene therapies remain unidimensional, elusive, and limited to modifying one pathological feature while ignoring others. Considering the complexity of signaling cascades in ND, we discuss emerging therapeutic concepts and suggest that deciphering the molecular mechanisms involved in dendritic pathology may broaden the phenotypic spectrum of ND treatment. An innovative multiplexed gene transfer strategy that employs silencing and/or over-expressing multiple effectors could preserve vulnerable neurons before they are lost. Such therapeutic approaches may extend brain health span and ameliorate burdensome chronic disease states.


Asunto(s)
Calcio , Enfermedades Neurodegenerativas , Humanos , Calcio/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Calcio de la Dieta , Terapia Genética
7.
Acta Neuropathol ; 141(2): 139-158, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33226471

RESUMEN

Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.


Asunto(s)
Dendritas/genética , Dendritas/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Animales , Preescolar , Aberraciones Cromosómicas , Humanos , Proteínas del Tejido Nervioso/genética
8.
Hum Mol Genet ; 27(12): 2187-2204, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29648643

RESUMEN

The nuclear-encoded glycyl-tRNA synthetase gene (GARS) is essential for protein translation in both cytoplasm and mitochondria. In contrast, different genes encode the mitochondrial and cytosolic forms of most other tRNA synthetases. Dominant GARS mutations were described in inherited neuropathies, while recessive mutations cause severe childhood-onset disorders affecting skeletal muscle and heart. The downstream events explaining tissue-specific phenotype-genotype relations remained unclear. We investigated the mitochondrial function of GARS in human cell lines and in the GarsC210R mouse model. Human-induced neuronal progenitor cells (iNPCs) carrying dominant and recessive GARS mutations showed alterations of mitochondrial proteins, which were more prominent in iNPCs with dominant, neuropathy-causing mutations. Although comparative proteomic analysis of iNPCs showed significant changes in mitochondrial respiratory chain complex subunits, assembly genes, Krebs cycle enzymes and transport proteins in both recessive and dominant mutations, proteins involved in fatty acid oxidation were only altered by recessive mutations causing mitochondrial cardiomyopathy. In contrast, significant alterations of the vesicle-associated membrane protein-associated protein B (VAPB) and its downstream pathways such as mitochondrial calcium uptake and autophagy were detected in dominant GARS mutations. The role of VAPB has been supported by similar results in the GarsC210R mice. Our data suggest that altered mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) may be important disease mechanisms leading to neuropathy in this condition.


Asunto(s)
Retículo Endoplásmico/genética , Glicina-ARNt Ligasa/genética , Mitocondrias/genética , Proteínas de Transporte Vesicular/genética , Animales , Humanos , Ratones , Mitocondrias/metabolismo , Mutación , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal , Células Madre/metabolismo
9.
EMBO J ; 35(15): 1656-76, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27334615

RESUMEN

A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). C9orf72 encodes two C9orf72 protein isoforms of unclear function. Reduced levels of C9orf72 expression have been reported in C9ALS/FTD patients, and although C9orf72 haploinsufficiency has been proposed to contribute to C9ALS/FTD, its significance is not yet clear. Here, we report that C9orf72 interacts with Rab1a and the Unc-51-like kinase 1 (ULK1) autophagy initiation complex. As a Rab1a effector, C9orf72 controls initiation of autophagy by regulating the Rab1a-dependent trafficking of the ULK1 autophagy initiation complex to the phagophore. Accordingly, reduction of C9orf72 expression in cell lines and primary neurons attenuated autophagy and caused accumulation of p62-positive puncta reminiscent of the p62 pathology observed in C9ALS/FTD patients. Finally, basal levels of autophagy were markedly reduced in C9ALS/FTD patient-derived iNeurons. Thus, our data identify C9orf72 as a novel Rab1a effector in the regulation of autophagy and indicate that C9orf72 haploinsufficiency and associated reductions in autophagy might be the underlying cause of C9ALS/FTD-associated p62 pathology.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Fenómenos Fisiológicos Celulares , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Proteína C9orf72 , Células Cultivadas , Demencia Frontotemporal/patología , Humanos , Neuronas/química , Neuronas/metabolismo
10.
N Engl J Med ; 377(18): 1713-1722, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29091557

RESUMEN

BACKGROUND: Spinal muscular atrophy type 1 (SMA1) is a progressive, monogenic motor neuron disease with an onset during infancy that results in failure to achieve motor milestones and in death or the need for mechanical ventilation by 2 years of age. We studied functional replacement of the mutated gene encoding survival motor neuron 1 (SMN1) in this disease. METHODS: Fifteen patients with SMA1 received a single dose of intravenous adeno-associated virus serotype 9 carrying SMN complementary DNA encoding the missing SMN protein. Three of the patients received a low dose (6.7×1013 vg per kilogram of body weight), and 12 received a high dose (2.0×1014 vg per kilogram). The primary outcome was safety. The secondary outcome was the time until death or the need for permanent ventilatory assistance. In exploratory analyses, we compared scores on the CHOP INTEND (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders) scale of motor function (ranging from 0 to 64, with higher scores indicating better function) in the two cohorts and motor milestones in the high-dose cohort with scores in studies of the natural history of the disease (historical cohorts). RESULTS: As of the data cutoff on August 7, 2017, all 15 patients were alive and event-free at 20 months of age, as compared with a rate of survival of 8% in a historical cohort. In the high-dose cohort, a rapid increase from baseline in the score on the CHOP INTEND scale followed gene delivery, with an increase of 9.8 points at 1 month and 15.4 points at 3 months, as compared with a decline in this score in a historical cohort. Of the 12 patients who had received the high dose, 11 sat unassisted, 9 rolled over, 11 fed orally and could speak, and 2 walked independently. Elevated serum aminotransferase levels occurred in 4 patients and were attenuated by prednisolone. CONCLUSIONS: In patients with SMA1, a single intravenous infusion of adeno-associated viral vector containing DNA coding for SMN resulted in longer survival, superior achievement of motor milestones, and better motor function than in historical cohorts. Further studies are necessary to confirm the safety and efficacy of this gene therapy. (Funded by AveXis and others; ClinicalTrials.gov number, NCT02122952 .).


Asunto(s)
Terapia Genética , Atrofias Musculares Espinales de la Infancia/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Estudios de Cohortes , Dependovirus , Supervivencia sin Enfermedad , Femenino , Terapia Genética/efectos adversos , Vectores Genéticos , Estudio Históricamente Controlado , Humanos , Lactante , Recién Nacido , Infusiones Intravenosas , Hepatopatías/etiología , Masculino , Destreza Motora , Apoyo Nutricional , Respiración Artificial , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/fisiopatología
11.
Mol Ther ; 27(10): 1836-1847, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31331814

RESUMEN

CLN6-Batten disease, a form of neuronal ceroid lipofuscinosis is a rare lysosomal storage disorder presenting with gradual declines in motor, visual, and cognitive abilities and early death by 12-15 years of age. We developed a self-complementary adeno-associated virus serotype 9 (scAAV9) vector expressing the human CLN6 gene under the control of a chicken ß-actin (CB) hybrid promoter. Intrathecal delivery of scAAV9.CB.hCLN6 into the cerebrospinal fluid (CSF) of the lumbar spinal cord of 4-year-old non-human primates was safe, well tolerated, and led to efficient targeting throughout the brain and spinal cord. A single intracerebroventricular (i.c.v.) injection at post-natal day 1 in Cln6 mutant mice delivered scAAV9.CB.CLN6 directly into the CSF, and it prevented or drastically reduced all of the pathological hallmarks of Batten disease. Moreover, there were significant improvements in motor performance, learning and memory deficits, and survival in treated Cln6 mutant mice, extending survival from 15 months of age (untreated) to beyond 21 months of age (treated). Additionally, many parameters were similar to wild-type counterparts throughout the lifespan of the treated mice.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/psicología , Lipofuscinosis Ceroideas Neuronales/terapia , Actinas/genética , Animales , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Humanos , Infusiones Intraventriculares , Inyecciones Espinales , Aprendizaje/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Actividad Motora/efectos de los fármacos , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Primates , Regiones Promotoras Genéticas , Resultado del Tratamiento
12.
Proc Natl Acad Sci U S A ; 113(42): E6496-E6505, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27688759

RESUMEN

Oligodendrocytes have recently been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS). Here we show that, in vitro, mutant superoxide dismutase 1 (SOD1) mouse oligodendrocytes induce WT motor neuron (MN) hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls and patients with sporadic and familial ALS, using two different reprogramming methods. All ALS oligodendrocyte lines induced MN death through conditioned medium (CM) and in coculture. CM-mediated MN death was associated with decreased lactate production and release, whereas toxicity in coculture was lactate-independent, demonstrating that MN survival is mediated not only by soluble factors. Remarkably, human SOD1 shRNA treatment resulted in MN rescue in both mouse and human cultures when knockdown was achieved in progenitor cells, whereas it was ineffective in differentiated oligodendrocytes. In fact, early SOD1 knockdown rescued lactate impairment and cell toxicity in all lines tested, with the exclusion of samples carrying chromosome 9 ORF 72 (C9orf72) repeat expansions. These did not respond to SOD1 knockdown nor did they show lactate release impairment. Our data indicate that SOD1 is directly or indirectly involved in ALS oligodendrocyte pathology and suggest that in this cell type, some damage might be irreversible. In addition, we demonstrate that patients with C9ORF72 represent an independent patient group that might not respond to the same treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Oligodendroglía/metabolismo , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Apoptosis , Biomarcadores , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Comunicación Celular , Muerte Celular , Diferenciación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ácido Láctico/metabolismo , Ratones , Ratones Transgénicos , Mutación , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Superóxido Dismutasa-1/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(2): 829-32, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379375

RESUMEN

Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Astrocitos/citología , Desdiferenciación Celular/fisiología , Diferenciación Celular/fisiología , Fibroblastos/citología , Neuronas Motoras/patología , Células-Madre Neurales/citología , Análisis de Varianza , Astrocitos/metabolismo , Comunicación Celular , Técnicas de Cultivo de Célula , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Humanos , Modelos Biológicos , Neuronas Motoras/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Ann Neurol ; 77(3): 399-414, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25516063

RESUMEN

OBJECTIVES: Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers. METHODS: Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed. RESULTS: Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology. INTERPRETATION: High SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética/métodos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/terapia , Proteínas del Complejo SMN/metabolismo , Animales , Biomarcadores , Dependovirus/genética , Electromiografía , Vectores Genéticos/uso terapéutico , Humanos , Neuronas Motoras/patología , Atrofia Muscular Espinal/etiología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología , Fenotipo , ARN Interferente Pequeño/uso terapéutico , Proteínas del Complejo SMN/genética , Porcinos
15.
Mol Ther ; 23(3): 477-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25358252

RESUMEN

Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Atrofia Muscular Espinal/terapia , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Animales Recién Nacidos , Tronco Encefálico/metabolismo , Corteza Cerebral/metabolismo , ADN Complementario/administración & dosificación , ADN Complementario/genética , ADN Complementario/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Expresión Génica , Vectores Genéticos/farmacocinética , Inyecciones Epidurales , Macaca fascicularis , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Transducción Genética , Transgenes
16.
J Occup Rehabil ; 25(2): 257-66, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25190669

RESUMEN

PURPOSE: The primary objective of this study is to evaluate the effect of Waddell signs (WS) on Functional Capacity Evaluation (FCE) in patients with chronic non-specific low back pain (CNSLBP) undergoing fitness for work evaluation. If an effect is observed, the secondary objective is to report performance of patients without WS in a standardized 1 day FCE protocol. METHODS: Survey of patients with CNSLBP as their primary complaint, referred for fitness for work evaluation, age between 20 and 60 years. Main outcome measures were WS and performance during manual handling assessed with lifting from floor to waist, waist to crown, horizontal and one handed carry; grip strength with Jamar hand held Dynamometer; ambulation with stair climbing and six minute walking test; work postures with elevated work, forward bend standing, kneeling, and sitting. RESULTS: 145 male with a mean age of 44.5 years (±10.1), and 53 females with a mean age of 43.6 years (±11.0) were included. Mean days off work were in male 658 (±1,056) and in female 642 (±886). 33% of all patients presented positive WS. FCE performance in male and female patients with positive and negative WS differed significantly in all comparisons except grip strength of the dominant hand and sitting in female. Performance of patients with negative WS indicated a mean physical capacity corresponding to lightmedium work in females and medium work in males for both age groups. CONCLUSIONS: WS should be assessed for interpretation of FCE results. Despite long work absence, patients with CNSLBP with negative WS demonstrated a physical capacity corresponding to substantial physical work demands.


Asunto(s)
Dolor Crónico/diagnóstico , Dolor Crónico/rehabilitación , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/rehabilitación , Evaluación de Capacidad de Trabajo , Adulto , Factores de Edad , Análisis de Varianza , Estudios Transversales , Prueba de Esfuerzo/métodos , Femenino , Fuerza de la Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Aptitud Física/fisiología , Postura/fisiología , Rango del Movimiento Articular/fisiología , Medición de Riesgo , Índice de Severidad de la Enfermedad , Factores Sexuales , Suiza , Análisis y Desempeño de Tareas , Caminata/fisiología
17.
RNA Biol ; 11(11): 1430-46, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25692239

RESUMEN

Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations.


Asunto(s)
Regulación de la Expresión Génica , Neuronas Motoras/metabolismo , Empalme del ARN , Proteínas del Complejo SMN/genética , Animales , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Humanos , Intrones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Interferencia de ARN , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas del Complejo SMN/metabolismo , Septinas/genética , Septinas/metabolismo
18.
Mol Ther ; 21(12): 2148-59, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24008656

RESUMEN

Mutations in superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (ALS) resulting in progressive motor neuron death through one or more acquired toxicities. Involvement of wild-type SOD1 has been linked to sporadic ALS, as misfolded SOD1 has been reported in affected tissues of sporadic patients and toxicity of astrocytes derived from sporadic ALS patients to motor neurons has been reported to be reduced by lowering the synthesis of SOD1. We now report slowed disease onset and progression in two mouse models following therapeutic delivery using a single peripheral injection of an adeno-associated virus serotype 9 (AAV9) encoding an shRNA to reduce the synthesis of ALS-causing human SOD1 mutants. Delivery to young mice that develop aggressive, fatal paralysis extended survival by delaying both disease onset and slowing progression. In a later-onset model, AAV9 delivery after onset markedly slowed disease progression and significantly extended survival. Moreover, AAV9 delivered intrathecally to nonhuman primates is demonstrated to yield robust SOD1 suppression in motor neurons and glia throughout the spinal cord and therefore, setting the stage for AAV9-mediated therapy in human clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/terapia , Dependovirus/genética , Terapia Genética , Neuronas Motoras/metabolismo , Neuroglía/metabolismo , ARN Interferente Pequeño/genética , Superóxido Dismutasa/genética , Administración Intravenosa , Esclerosis Amiotrófica Lateral/genética , Animales , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Inyecciones Espinales , Macaca fascicularis , Ratones , Neuronas Motoras/patología , Neuroglía/patología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
19.
Mol Ther Methods Clin Dev ; 32(1): 101176, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38225934

RESUMEN

Thirty genes are involved in the biosynthesis and modification of glycosylphosphatidylinositol (GPI)-anchored proteins, and defects in these genes cause inherited GPI deficiency (IGD). PIGA is X-linked and involved in the first step of GPI biosynthesis, and only males are affected by variations in this gene. The main symptoms of IGD are neurological abnormalities, such as developmental delay and seizures. There is no effective treatment at present. We crossed Nestin-Cre mice with Piga-floxed mice to generate CNS-specific Piga knockout (KO) mice. Hemizygous KO male mice died by P10 with severely defective growth. Heterozygous Piga KO female mice are mosaic for Piga expression and showed severe defects in growth and myelination and died by P25. Using these mouse models, we evaluated the effect of gene replacement therapy with adeno-associated virus (AAV). It expressed efficacy within 6 days, and the survival of male mice was extended to up to 3 weeks, whereas 40% of female mice survived for approximately 1 year and the growth defect was improved. However, liver cancer developed in all three treated female mice at 1 year of age, which was probably caused by the AAV vector bearing a strong CAG promoter.

20.
Cell Rep ; 43(2): 113802, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38368610

RESUMEN

RNA helicases constitute a large protein family implicated in cellular RNA homeostasis and disease development. Here, we show that the RNA helicase IGHMBP2, linked to the neuromuscular disorder spinal muscular atrophy with respiratory distress type 1 (SMARD1), associates with polysomes and impacts translation of mRNAs containing short, GC-rich, and structured 5' UTRs. The absence of IGHMBP2 causes ribosome stalling at the start codon of target mRNAs, leading to reduced translation efficiency. The main mRNA targets of IGHMBP2-mediated regulation encode for components of the THO complex (THOC), linking IGHMBP2 to mRNA production and nuclear export. Accordingly, failure of IGHMBP2 regulation of THOC causes perturbations of the transcriptome and its encoded proteome, and ablation of THOC subunits phenocopies these changes. Thus, IGHMBP2 is an upstream regulator of THOC. Of note, IGHMBP2-dependent regulation of THOC is also observed in astrocytes derived from patients with SMARD1 disease, suggesting that deregulated mRNA metabolism contributes to SMARD1 etiology and may enable alternative therapeutic avenues.


Asunto(s)
Atrofia Muscular Espinal , Síndrome de Dificultad Respiratoria del Recién Nacido , Humanos , ARN Mensajero/genética , Atrofia Muscular Espinal/genética , Regiones no Traducidas 5' , Homeostasis , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA