Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Virol ; 91(3)2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27852862

RESUMEN

Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly. IMPORTANCE: Assembly-activating protein (AAP) is a recently discovered adeno-associated virus (AAV) protein that promotes capsid assembly and provides new opportunities for research in assembly. Previous studies on AAV serotype 2 (AAV2) showed that assembly takes place in the nucleolus and is dependent on AAP and that capsids colocalize with AAP in the nucleolus during the assembly process. However, through the investigation of 12 different AAV serotypes (AAV1 to -12), we find that AAP is not an essential requirement for capsid assembly of AAV4, -5, and -11, and AAP, assembled capsids, and the nucleolus do not colocalize for all the serotypes. In addition, we find that there are both serotype-restricted and serotype-promiscuous AAPs in their assembly roles. These findings challenge widely held beliefs about the importance of the nucleolus and AAP in AAV assembly and show the heterogeneous nature of the assembly process within the AAV family.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Dependovirus/fisiología , Proteínas Virales/metabolismo , Ensamble de Virus , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Dependovirus/clasificación , Dependovirus/ultraestructura , Expresión Génica , Prueba de Complementación Genética , Vectores Genéticos/genética , Humanos , Serogrupo , Proteínas Virales/química , Proteínas Virales/genética , Virión , Replicación Viral
2.
J Virol ; 91(18)2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28679762

RESUMEN

Adeno-associated virus (AAV) entry is determined by its interactions with specific surface glycans and a proteinaceous receptor(s). Adeno-associated virus receptor (AAVR) (also named KIAA0319L) is an essential cellular receptor required for the transduction of vectors derived from multiple AAV serotypes, including the evolutionarily distant serotypes AAV2 and AAV5. Here, we further biochemically characterize the AAV-AAVR interaction and define the domains within the ectodomain of AAVR that facilitate this interaction. By using a virus overlay assay, it was previously shown that the major AAV2 binding protein in membrane preparations of human cells corresponds to a glycoprotein with a molecular mass of 150 kDa. By establishing a purification procedure, performing further protein separation by two-dimensional electrophoresis, and utilizing mass spectrometry, we now show that this glycoprotein is identical to AAVR. While we find that AAVR is an N-linked glycosylated protein, this glycosylation is not a strict requirement for AAV2 binding or functional transduction. Using a combination of genetic complementation with deletion constructs and virus overlay assays with individual domains, we find that AAV2 functionally interacts predominantly with the second Ig-like polycystic kidney disease (PKD) repeat domain (PKD2) present in the ectodomain of AAVR. In contrast, AAV5 interacts primarily through the first, most membrane-distal, PKD domain (PKD1) of AAVR to promote transduction. Furthermore, other AAV serotypes, including AAV1 and -8, require a combination of PKD1 and PKD2 for optimal transduction. These results suggest that despite their shared dependence on AAVR as a critical entry receptor, different AAV serotypes have evolved distinctive interactions with the same receptor.IMPORTANCE Over the past decade, AAV vectors have emerged as leading gene delivery tools for therapeutic applications and biomedical research. However, fundamental aspects of the AAV life cycle, including how AAV interacts with host cellular factors to facilitate infection, are only partly understood. In particular, AAV receptors contribute significantly to AAV vector transduction efficiency and tropism. The recently identified AAV receptor (AAVR) is a key host receptor for multiple serotypes, including the most studied serotype, AAV2. AAVR binds directly to AAV2 particles and is rate limiting for viral transduction. Defining the AAV-AAVR interface in more detail is important to understand how AAV engages with its cellular receptor and how the receptor facilitates the entry process. Here, we further define AAV-AAVR interactions, genetically and biochemically, and show that different AAV serotypes have discrete interactions with the Ig-like PKD domains of AAVR. These findings reveal an unexpected divergence of AAVR engagement within these parvoviruses.

3.
Arch Biochem Biophys ; 601: 80-7, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26971468

RESUMEN

Inhibition of striated muscle contraction at resting Ca(2+) depends on the C-terminal half of troponin I (TnI) in thin filaments. Much focus has been on a short inhibitory peptide (Ip) sequence within TnI, but structural studies and identification of disease-associated mutations broadened emphasis to include a larger mobile domain (Md) sequence at the C-terminus of TnI. For Md to function effectively in muscle relaxation, tight mechanical coupling to troponin's core-and thus tropomyosin-is presumably needed. We generated recombinant, human cardiac troponins containing one of two TnI constructs: either an 8-amino acid linker between Md and the rest of troponin (cTnILink8), or an Md deletion (cTnI1-163). Motility assays revealed that Ca(2+)-sensitivity of reconstituted thin filament sliding was markedly increased with cTnILink8 (∼0.9 pCa unit leftward shift of speed-pCa relation compared to WT), and increased further when Md was missing entirely (∼1.4 pCa unit shift). Cardiac Tn's ability to turn off filament sliding at diastolic Ca(2+) was mostly (61%), but not completely eliminated with cTnI1-163. TnI's Md is required for full inhibition of unloaded filament sliding, although other portions of troponin-presumably including Ip-are also necessary. We also confirm that TnI's Md is not responsible for superactivation of actomyosin cycling by troponin.


Asunto(s)
Contracción Miocárdica , Troponina I/química , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/química , Animales , Calcio/química , Humanos , Relajación Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Mutación , Miocardio/metabolismo , Dominios Proteicos , Conejos , Proteínas Recombinantes/química , Estrés Mecánico , Tropomiosina/química
4.
J Struct Biol ; 184(2): 129-35, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24036405

RESUMEN

Mechanistic studies of macromolecular complexes often feature X-ray structures of complexes with bound ligands. The attachment of adeno-associated virus (AAV) to cell surface glycosaminoglycans (GAGs) is an example that has not proven amenable to crystallography, because the binding of GAG analogs disrupts lattice contacts. The interactions of AAV with GAGs are of interest in mediating the cell specificity of AAV-based gene therapy vectors. Previous electron microscopy led to differing conclusions on the exact binding site and the existence of large ligand-induced conformational changes in the virus. Conformational changes are expected during cell entry, but it has remained unclear whether the electron microscopy provided evidence of their induction by GAG-binding. Taking advantage of automated data collection, careful processing and new methods of structure refinement, the structure of AAV-DJ complexed with sucrose octasulfate is determined by electron microscopy difference map analysis to 4.8Å resolution. At this higher resolution, individual sulfate groups are discernible, providing a stereochemical validation of map interpretation, and highlighting interactions with two surface arginines that have been implicated in genetic studies. Conformational changes induced by the SOS are modest and limited to the loop most directly interacting with the ligand. While the resolution attainable will depend on sample order and other factors, there are an increasing number of macromolecular complexes that can be studied by cryo-electron microscopy at resolutions beyond 5Å, for which the approaches used here could be used to characterize the binding of inhibitors and other small molecule effectors when crystallography is not tractable.


Asunto(s)
Dependovirus/ultraestructura , Sitios de Unión , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Células Cultivadas , Microscopía por Crioelectrón , Disacáridos/química , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Receptores Virales/química , Receptores Virales/ultraestructura , Virión/química , Virión/ultraestructura
5.
Trends Microbiol ; 30(5): 432-451, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34711462

RESUMEN

Adeno-associated virus (AAV) is the leading vector in emerging treatments of inherited diseases. Higher transduction efficiencies and cellular specificity are required for broader clinical application, motivating investigations of virus-host molecular interactions during cell entry. High-throughput methods are identifying host proteins more comprehensively, with subsequent molecular studies revealing unanticipated complexity and serotype specificity. Cryogenic electron microscopy (cryo-EM) provides a path towards structural details of these sometimes heterogeneous virus-host complexes, and is poised to illuminate more fully the steps in entry. Here presented, is progress in understanding the distinct steps of glycan attachment, and receptor-mediated entry/trafficking. Comparison with structures of antibody complexes provides new insights on immune neutralization with implications for the design of improved gene therapy vectors.


Asunto(s)
Dependovirus , Internalización del Virus , Dependovirus/genética , Dependovirus/metabolismo , Vectores Genéticos , Polisacáridos/metabolismo , Receptores de Superficie Celular/genética , Serogrupo
6.
Elife ; 82019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31115336

RESUMEN

Adeno-associated virus (AAV) vectors are preeminent in emerging clinical gene therapies. Generalizing beyond the most tractable genetic diseases will require modulation of cell specificity and immune neutralization. Interactions of AAV with its cellular receptor, AAVR, are key to understanding cell-entry and trafficking with the rigor needed to engineer tissue-specific vectors. Cryo-electron tomography shows ordered binding of part of the flexible receptor to the viral surface, with distal domains in multiple conformations. Regions of the virus and receptor in close physical proximity can be identified by cross-linking/mass spectrometry. Cryo-electron microscopy with a two-domain receptor fragment reveals the interactions at 2.4 Å resolution. AAVR binds between AAV's spikes on a plateau that is conserved, except in one clade whose structure is AAVR-incompatible. AAVR's footprint overlaps the epitopes of several neutralizing antibodies, prompting a re-evaluation of neutralization mechanisms. The structure provides a roadmap for experimental probing and manipulation of viral-receptor interactions.


Asunto(s)
Cápside/química , Dependovirus/química , Vectores Genéticos/química , Receptores de Superficie Celular/química , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Unión Proteica , Conformación Proteica
7.
Mol Ther Methods Clin Dev ; 5: 1-12, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28480299

RESUMEN

Atomic structures of adeno-associated virus (AAV)-DJ, alone and in complex with fondaparinux, have been determined by cryoelectron microscopy at 3 Å resolution. The gene therapy vector, AAV-DJ, is a hybrid of natural serotypes that was previously derived by directed evolution, selecting for hepatocyte entry and resistance to neutralization by human serum. The structure of AAV-DJ differs from that of parental serotypes in two regions where neutralizing antibodies bind, so immune escape appears to have been the primary driver of AAV-DJ's directed evolution. Fondaparinux is an analog of cell surface heparan sulfate to which several AAVs bind during entry. Fondaparinux interacts with viral arginines at a known heparin binding site, without the large conformational changes whose presence was controversial in low-resolution imaging of AAV2-heparin complexes. The glycan density suggests multi-modal binding that could accommodate sequence variation and multivalent binding along a glycan polymer, consistent with a role in attachment, prior to more specific interactions with a receptor protein mediating entry.

8.
Structure ; 20(8): 1310-20, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22727812

RESUMEN

AAV-DJ, a leading candidate vector for liver gene therapy, was created through random homologous recombination followed by directed evolution, selecting for in vivo liver tropism and resistance to in vitro immune neutralization. Here, the 4.5 Å resolution cryo-EM structure is determined for the engineered AAV vector, revealing structural features that illuminate its phenotype. The heparan sulfate receptor-binding site is little changed from AAV-2, and heparin-binding affinity is similar. A loop that is antigenic in other serotypes has a unique conformation in AAV-DJ that would conflict with the binding of an AAV-2 neutralizing monoclonal antibody. This is consistent with increased resistance to neutralization by human polyclonal sera, raising the possibility that changed tropism may be a secondary effect of altered immune interactions. The reconstruction exemplifies analysis of fine structural changes and the potential of cryo-EM, in favorable cases, to characterize mutant or ligand-bound complexes.


Asunto(s)
Cápside/química , Microscopía por Crioelectrón , Dependovirus/química , Modelos Moleculares , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Cromatografía de Afinidad , Cristalografía por Rayos X , Heparina/química , Unión Proteica , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína , Propiedades de Superficie
9.
Virology ; 420(1): 10-9, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21917284

RESUMEN

Crystal structures of the AAV-6 capsid at 3Å reveal a subunit fold homologous to other parvoviruses with greatest differences in two external loops. The electrostatic potential suggests that receptor-attachment is mediated by four residues: Arg(576), Lys(493), Lys(459) and Lys(531), defining a positively charged region curving up from the valley between adjacent spikes. It overlaps only partially with the receptor-binding site of AAV-2, and the residues endowing the electrostatic character are not homologous. Mutational substitution of each residue decreases heparin affinity, particularly Lys(531) and Lys(459). Neither is conserved among heparin-binding serotypes, indicating that diverse modes of receptor attachment have been selected in different serotypes. Surface topology and charge are also distinct at the shoulder of the spike, where linear epitopes for AAV-2's neutralizing monoclonal antibody A20 come together. Evolutionarily, selection of changed side-chain charge may have offered a conservative means to evade immune neutralization while preserving other essential functionality.


Asunto(s)
Dependovirus/química , Dependovirus/metabolismo , Infecciones por Parvoviridae/virología , Receptores Virales/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Cristalografía por Rayos X , Dependovirus/clasificación , Dependovirus/genética , Células HeLa , Humanos , Infecciones por Parvoviridae/metabolismo , Unión Proteica , Propiedades de Superficie
10.
Biosens Bioelectron ; 26(11): 4538-44, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21652197

RESUMEN

Real-time label-free electrical detection of proteins, including cardiac troponin (cTn), is demonstrated using functionalized SnO2 nanobelt field-effect transistors (FETs) with integrated microfluidics. Selective biomolecular functionalization of the active SnO2 nanobelt channel and effective passivation of the substrate surface were realized and verified through fluorescence microscopy. The validation/verification of the sensing scheme was initially demonstrated via detection of biotin-streptavidin binding: devices with single biotinylated SnO2 nanobelts showed pronounced conductance changes in response to streptavidin binding. Importantly, the pH-dependence of the conductance changes was fully consistent with the charged states of streptavidin at different pH. Moreover, the specificity of the sensors' electrical responses was confirmed by co-labeling with quantum dots. Finally, the sensing platform was successfully applied for detection of the cardiac troponin I (cTnI) subunit within cTn, a clinically important protein marker for myocardial infarction.


Asunto(s)
Técnicas Biosensibles/instrumentación , Troponina I/análisis , Animales , Anticuerpos Inmovilizados , Biomarcadores/análisis , Técnicas Biosensibles/métodos , Biotina , Bovinos , Diseño de Equipo , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/química , Microscopía Fluorescente , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/metabolismo , Miocardio/química , Unión Proteica , Albúmina Sérica Bovina/análisis , Estreptavidina , Compuestos de Estaño , Transistores Electrónicos , Tropomiosina/análisis , Troponina I/inmunología
11.
DNA Cell Biol ; 30(9): 653-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21438758

RESUMEN

Ca(2+) signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with sub-micromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca(2+)-activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOH-terminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca(2+) activation in cardiac muscle cells.


Asunto(s)
Señalización del Calcio/fisiología , Contracción Muscular/fisiología , Miocardio/metabolismo , Miosinas/metabolismo , Troponina/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Fluorescencia , Humanos , Miosinas/fisiología , Conejos , Proteínas Recombinantes/metabolismo , Análisis de Regresión , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA