Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
New Phytol ; 232(5): 2138-2151, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33891715

RESUMEN

Cable bacteria are sulfide-oxidising, filamentous bacteria that reduce toxic sulfide levels, suppress methane emissions and drive nutrient and carbon cycling in sediments. Recently, cable bacteria have been found associated with roots of aquatic plants and rice (Oryza sativa). However, the extent to which cable bacteria are associated with aquatic plants in nature remains unexplored. Using newly generated and public 16S rRNA gene sequence datasets combined with fluorescence in situ hybridisation, we investigated the distribution of cable bacteria around the roots of aquatic plants, encompassing seagrass (including seagrass seedlings), rice, freshwater and saltmarsh plants. Diverse cable bacteria were found associated with roots of 16 out of 28 plant species and at 36 out of 55 investigated sites, across four continents. Plant-associated cable bacteria were confirmed across a variety of ecosystems, including marine coastal environments, estuaries, freshwater streams, isolated pristine lakes and intensive agricultural systems. This pattern indicates that this plant-microbe relationship is globally widespread and neither obligate nor species specific. The occurrence of cable bacteria in plant rhizospheres may be of general importance to vegetation vitality, primary productivity, coastal restoration practices and greenhouse gas balance of rice fields and wetlands.


Asunto(s)
Ecosistema , Oxígeno , Bacterias/genética , Sedimentos Geológicos , Raíces de Plantas , ARN Ribosómico 16S/genética , Rizosfera
2.
Biodivers Data J ; 11: e112420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829294

RESUMEN

The standardization of data, encompassing both primary and contextual information (metadata), plays a pivotal role in facilitating data (re-)use, integration, and knowledge generation. However, the biodiversity and omics communities, converging on omics biodiversity data, have historically developed and adopted their own distinct standards, hindering effective (meta)data integration and collaboration. In response to this challenge, the Task Group (TG) for Sustainable DwC-MIxS Interoperability was established. Convening experts from the Biodiversity Information Standards (TDWG) and the Genomic Standards Consortium (GSC) alongside external stakeholders, the TG aimed to promote sustainable interoperability between the Minimum Information about any (x) Sequence (MIxS) and Darwin Core (DwC) specifications. To achieve this goal, the TG utilized the Simple Standard for Sharing Ontology Mappings (SSSOM) to create a comprehensive mapping of DwC keys to MIxS keys. This mapping, combined with the development of the MIxS-DwC extension, enables the incorporation of MIxS core terms into DwC-compliant metadata records, facilitating seamless data exchange between MIxS and DwC user communities. Through the implementation of this translation layer, data produced in either MIxS- or DwC-compliant formats can now be efficiently brokered, breaking down silos and fostering closer collaboration between the biodiversity and omics communities. To ensure its sustainability and lasting impact, TDWG and GSC have both signed a Memorandum of Understanding (MoU) on creating a continuous model to synchronize their standards. These achievements mark a significant step forward in enhancing data sharing and utilization across domains, thereby unlocking new opportunities for scientific discovery and advancement.

3.
Commun Biol ; 5(1): 579, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697788

RESUMEN

Many coastal ecosystems, such as coral reefs and seagrass meadows, currently experience overgrowth by fleshy algae due to the interplay of local and global stressors. This is usually accompanied by strong decreases in habitat complexity and biodiversity. Recently, persistent, mat-forming fleshy red algae, previously described for the Black Sea and several Atlantic locations, have also been observed in the Mediterranean. These several centimetre high mats may displace seagrass meadows and invertebrate communities, potentially causing a substantial loss of associated biodiversity. We show that the sessile invertebrate biodiversity in these red algae mats is high and exceeds that of neighbouring seagrass meadows. Comparative biodiversity indices were similar to or higher than those recently described for calcifying green algae habitats and biodiversity hotspots like coral reefs or mangrove forests. Our findings suggest that fleshy red algae mats can act as alternative habitats and temporary sessile invertebrate biodiversity reservoirs in times of environmental change.


Asunto(s)
Ecosistema , Rhodophyta , Animales , Biodiversidad , Arrecifes de Coral , Invertebrados
4.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37632753

RESUMEN

Omic BON is a thematic Biodiversity Observation Network under the Group on Earth Observations Biodiversity Observation Network (GEO BON), focused on coordinating the observation of biomolecules in organisms and the environment. Our founding partners include representatives from national, regional, and global observing systems; standards organizations; and data and sample management infrastructures. By coordinating observing strategies, methods, and data flows, Omic BON will facilitate the co-creation of a global omics meta-observatory to generate actionable knowledge. Here, we present key elements of Omic BON's founding charter and first activities.


Asunto(s)
Biodiversidad , Conocimiento
5.
Gigascience ; 10(5)2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33983435

RESUMEN

BACKGROUND: Data papers have emerged as a powerful instrument for open data publishing, obtaining credit, and establishing priority for datasets generated in scientific experiments. Academic publishing improves data and metadata quality through peer review and increases the impact of datasets by enhancing their visibility, accessibility, and reusability. OBJECTIVE: We aimed to establish a new type of article structure and template for omics studies: the omics data paper. To improve data interoperability and further incentivize researchers to publish well-described datasets, we created a prototype workflow for streamlined import of genomics metadata from the European Nucleotide Archive directly into a data paper manuscript. METHODS: An omics data paper template was designed by defining key article sections that encourage the description of omics datasets and methodologies. A metadata import workflow, based on REpresentational State Transfer services and Xpath, was prototyped to extract information from the European Nucleotide Archive, ArrayExpress, and BioSamples databases. FINDINGS: The template and workflow for automatic import of standard-compliant metadata into an omics data paper manuscript provide a mechanism for enhancing existing metadata through publishing. CONCLUSION: The omics data paper structure and workflow for import of genomics metadata will help to bring genomic and other omics datasets into the spotlight. Promoting enhanced metadata descriptions and enforcing manuscript peer review and data auditing of the underlying datasets brings additional quality to datasets. We hope that streamlined metadata reuse for scholarly publishing encourages authors to create enhanced metadata descriptions in the form of data papers to improve both the quality of their metadata and its findability and accessibility.


Asunto(s)
Genómica , Metadatos , Bases de Datos Factuales , Revisión por Pares , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA