Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Angew Chem Int Ed Engl ; 57(4): 1016-1020, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29181863

RESUMEN

Non-oxidative dehydroaromatization of methane (MDA) is a promising catalytic process for direct valorization of natural gas to liquid hydrocarbons. The application of this reaction in practical technology is hindered by a lack of understanding about the mechanism and nature of the active sites in benchmark zeolite-based Mo/ZSM-5 catalysts, which precludes the solution of problems such as rapid catalyst deactivation. By applying spectroscopy and microscopy, it is shown that the active centers in Mo/ZSM-5 are partially reduced single-atom Mo sites stabilized by the zeolite framework. By combining a pulse reaction technique with isotope labeling of methane, MDA is shown to be governed by a hydrocarbon pool mechanism in which benzene is derived from secondary reactions of confined polyaromatic carbon species with the initial products of methane activation.

2.
Angew Chem Int Ed Engl ; 56(19): 5160-5163, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28378440

RESUMEN

Zeolite synthesis: In a Communication published in this journal in early 2015, Messinger, Na, Seo, Ryoo, and Chmelka (MNSRC) claim that the formation of zeolite MFI nanosheets proceeds through an intermediate, crystalline layered silicate phase. It is now proposed that the layered silicate phase in the MNSRC work is an artefact rather than a species possibly playing a significant role in MFI nanosheet formation.

3.
Nano Lett ; 14(3): 1433-8, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24499132

RESUMEN

Although monodisperse amorphous silica nanoparticles have been widely investigated, their formation mechanism is still a topic of debate. Here, we demonstrate the formation of monodisperse nanoparticles from colloidally stabilized primary particles, which at a critical concentration undergo a concerted association process, concomitant with a morphological and structural collapse. The formed assemblies grow further by addition of primary particles onto their surface. The presented mechanism, consistent with previously reported observations, reconciles the different theories proposed to date.

4.
Inorg Chem ; 53(2): 882-7, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24405155

RESUMEN

In situ NMR and DFT modeling demonstrate that N,N-dimethylformamide (DMF) promotes the formation of metal-organic framework NH2-MIL-101(Al). In situ NMR studies show that upon dissociation of an aluminum-coordinated aqua ligand in NH2-MOF-235(Al), DMF forms a H-Cl-DMF complex during synthesis. This reaction induces a transformation from the MOF-235 topology into the MIL-101 topology. Electronic structure density functional theory (DFT) calculations show that the use of DMF instead of water as the synthesis solvent decreases the energy gap between the kinetically favored MIL-101 and thermodynamically favored MIL-53 products. DMF therefore promotes MIL-101 topology both kinetically and thermodynamically.

5.
ACS Catal ; 13(24): 15730-15745, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125979

RESUMEN

In2O3 is a promising catalyst for the hydrogenation of CO2 to methanol, relevant to renewable energy storage in chemicals. Herein, we investigated the promoting role of Al on In2O3 using flame spray pyrolysis to prepare a series of In2O3-Al2O3 samples in a single step (0-20 mol % Al). Al promoted the methanol yield, with an optimum being observed at an Al content of 5 mol %. Extensive characterization showed that Al can dope into the In2O3 lattice (maximum ∼ 1.2 mol %), leading to the formation of more oxygen vacancies involved in CO2 adsorption and methanol formation. The rest of Al is present as small Al2O3 domains at the In2O3 surface, blocking the active sites for CO2 hydrogenation and contributing to higher CO selectivity. At higher Al content (≥10 mol % Al), the particle size of In2O3 decreases due to the stabilizing effect of Al2O3. Nevertheless, these smaller particles are prone to sintering during CO2 hydrogenation since they appear to be more easily reduced. These findings show subtle effects of a structural promoter such as Al on the reducibility and texture of In2O3 as a CO2 hydrogenation catalyst.

6.
J Phys Chem Lett ; 14(28): 6506-6512, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37439753

RESUMEN

The selectivity of the methanol-to-hydrocarbons (MTH) reaction can be tuned by modifying zeolite catalysts with alkaline earth metals, which typically increase propylene selectivity and catalyst stability. Here we employed Sr2+ as its higher atomic number in comparison to the zeolite T atoms facilitates characterization by scanning transmission electron microscopy and operando X-ray absorption spectroscopy. Sr2+ dispersed in the ZSM-5 micropores coordinates water, methanol, and dimethyl ether during the MTH reaction. Complementary characterization with nuclear magnetic resonance spectroscopy, thermogravimetric analysis combined with mass spectrometry, operando infrared spectroscopy, and X-ray diffraction points to the retention of substantially more adsorbates during the MTH reaction in comparison to Sr-free zeolites. Our findings support the notion that alkaline earth metals modify the porous reaction environment such that the olefin cycle is favored over the aromatic cycle in the MTH, explaining the increased propylene yield and lower deactivation rate.

7.
Catal Sci Technol ; 13(24): 6959-6967, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38089938

RESUMEN

A variety of methods are employed to synthesize amorphous silica-alumina (ASA) to resolve the role of Al speciation and surface area in the catalytic performance in the Diels-Alder cycloaddition reaction of 2,5-dimethylfuran and ethylene to p-xylene. ASA was prepared by homogeneous deposition-precipitation (HDP) of Al3+ on ordered mesoporous silica, i.e., SBA-15 and OMS prepared under hydrothermal synthesis conditions using an imidazole-based template, and one-step flame spray pyrolysis (FSP). IR spectroscopy and 27Al MAS NMR showed that the resulting ASA represented a set of materials with distinct textural and acidic properties. ASA prepared by grafting Al to ordered mesoporous silica led to a much higher concentration of Brønsted acid sites (BAS). These samples performed much better in the DAC reaction, with p-xylene yields higher than those obtained with a HBeta zeolite benchmark. Materials with Al partially in the bulk of silica (OMS, FSP) and containing significant alumina domains are less acidic and exhibit much lower p-xylene yields. These findings point to the importance of Brønsted acidity for p-xylene formation. This study shows that careful design of the Al speciation can lead to amorphous silica-alumina with similar DAC performance to microporous zeolites.

8.
ACS Catal ; 13(6): 3471-3484, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36970466

RESUMEN

The methanol-to-hydrocarbons (MTH) process is an industrially relevant method to produce valuable light olefins such as propylene. One of the ways to enhance propylene selectivity is to modify zeolite catalysts with alkaline earth cations. The underlying mechanistic aspects of this type of promotion are not well understood. Here, we study the interaction of Ca2+ with reaction intermediates and products formed during the MTH reaction. Using transient kinetic and spectroscopic tools, we find strong indications that the selectivity differences between Ca/ZSM-5 and HZSM-5 are related to the different local environment inside the pores due to the presence of Ca2+. In particular, Ca/ZSM-5 strongly retains water, hydrocarbons, and oxygenates, which occupy as much as 10% of the micropores during the ongoing MTH reaction. This change in the effective pore geometry affects the formation of hydrocarbon pool components and in this way directs the MTH reaction toward the olefin cycle.

9.
Chemistry ; 18(6): 1800-10, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22223548

RESUMEN

New routes for the preparation of highly active TiO(2)-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, (63)Cu nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO(2) catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO(2) at 120 °C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO(2) at 140 °C, corresponding to an initial reaction rate of 104 mmol g(cat) (-1) s(-1). The activation energy on the Cu/mesoporous TiO(2) catalyst was found to be (144±5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123±3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO(2) support (75±2 kJ mol(-1)).

10.
J Phys Chem C Nanomater Interfaces ; 125(17): 9050-9059, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34055125

RESUMEN

The enhancing effect of extraframework Al (EFAl) species on the acidity of bridging hydroxyl groups in a steam-calcined faujasite zeolite (ultrastabilized Y, USY) was investigated by in situ monitoring the H/D exchange reaction between benzene and deuterated zeolites by 1H MAS NMR spectroscopy. This exchange reaction involves Brønsted acid sites (BAS) located in sodalite cages and supercages. In a reference faujasite zeolite free from EFAl, both populations of BAS are equally and relatively slowly reactive toward C6H6. In USY, in stark contrast, the H/D exchange of sodalite hydroxyl groups is significantly faster than that of hydroxyl groups located in the faujasite supercages, even though benzene has only access to the supercages. This evidences selective enhancement of BAS near Lewis acidic EFAl species, which according to the NMR findings are located in the faujasite sodalite cages.

11.
Macromolecules ; 54(17): 7955-7962, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34552277

RESUMEN

Bond exchange via neighboring group-assisted reactions in dynamic covalent networks results in efficient mechanical relaxation. In Nature, the high reactivity of RNA toward nucleophilic substitution is largely attributed to the formation of a cyclic phosphate ester intermediate via neighboring group participation. We took inspiration from RNA to develop a dynamic covalent network based on ß-hydroxyl-mediated transesterifications of hydroxyethyl phosphate triesters. A simple one-step synthetic strategy provided a network containing phosphate triesters with a pendant hydroxyethyl group. 31P solid-state NMR demonstrated that a cyclic phosphate triester is an intermediate in transesterification, leading to dissociative network rearrangement. Significant viscous flow at 60-100 °C makes the material suitable for fast processing via extrusion and compression molding.

12.
Chem Commun (Camb) ; 57(27): 3323-3326, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33725046

RESUMEN

A methanethiol-to-olefins (MtTO) equivalent of methanol-to-olefins (MTO) chemistry is demonstrated. CH3SH can be converted to ethylene and propylene in a similar manner as CH3OH over SSZ-13 zeolite involving a hydrocarbon pool mechansim. Methylated aromatic intermediates were identified by 13C NMR analysis. Comparison of MtTO and MTO chemistry provides clues about the mechanism of C-C bond formation and catalyst deactivation.

13.
ACS Nano ; 15(6): 10296-10308, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34077193

RESUMEN

Electron microscopy (EM) of materials undergoing chemical reactions provides knowledge of the underlying mechanisms. However, the mechanisms are often complex and cannot be fully resolved using a single method. Here, we present a distributed electron microscopy method for studying complex reactions. The method combines information from multiple stages of the reaction and from multiple EM methods, including liquid phase EM (LP-EM), cryogenic EM (cryo-EM), and cryo-electron tomography (cryo-ET). We demonstrate this method by studying the desilication mechanism of zeolite crystals. Collectively, our data reveal that the reaction proceeds via a two-step anisotropic etching process and that the defects in curved surfaces and between the subunits in the crystal control the desilication kinetics by directing mass transport.


Asunto(s)
Tomografía con Microscopio Electrónico , Microscopía por Crioelectrón
14.
Sci Rep ; 10(1): 19498, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177559

RESUMEN

Diatoms are unicellular photosynthetic algae that produce a silica exoskeleton (frustule) which exposes a highly ordered nano to micro scale morphology. In recent years there has been a growing interest in modifying diatom frustules for technological applications. This is achieved by adding non-essential metals to the growth medium of diatoms which in turn modifies morphology, composition, and resulting properties of the frustule. Here, we investigate the frustule formation in diatom Pinnularia sp., including changes to overall morphology, silica thickness, and composition, in the presence of Al3+ ions at different concentrations. Our results show that in the presence of Al3+ the total silica uptake from the growth medium increases, although a decrease in the growth rate is observed. This leads to a higher inorganic content per diatom resulting in a decreased pore diameter and a thicker frustule as evidenced by electron microscopy. Furthermore, 27Al solid-state NMR, FIB-SEM, and EDS results confirm that Al3+ becomes incorporated into the frustule during the silicification process, thus, improving hydrolysis resistance. This approach may be extended to a broad range of elements and diatom species towards the scalable production of silica materials with tunable hierarchical morphology and chemical composition.


Asunto(s)
Diatomeas/química , Diatomeas/ultraestructura , Aluminio/química , Cationes/química , Diatomeas/efectos de los fármacos , Diatomeas/metabolismo , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanoestructuras/química , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Espectrometría por Rayos X , Termogravimetría
15.
ACS Energy Lett ; 4(7): 1733-1740, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31328171

RESUMEN

Molybdenum disulfide (MoS2) is a highly promising catalyst for the hydrogen evolution reaction (HER) to realize large-scale artificial photosynthesis. The metallic 1T'-MoS2 phase, which is stabilized via the adsorption or intercalation of small molecules or cations such as Li, shows exceptionally high HER activity, comparable to that of noble metals, but the effect of cation adsorption on HER performance has not yet been resolved. Here we investigate in detail the effect of Li adsorption and intercalation on the proton reduction properties of MoS2. By combining spectroscopy methods (infrared of adsorbed NO, 7Li solid-state nuclear magnetic resonance, and X-ray photoemission and absorption) with catalytic activity measurements and theoretical modeling, we infer that the enhanced HER performance of Li x MoS2 is predominantly due to the catalytic promotion of edge sites by Li.

16.
Biomacromolecules ; 9(1): 84-90, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18067259

RESUMEN

Polymeric particles currently used for embolization procedures have the disadvantage that they are radiolucent, that is, invisible on X-ray images, and consequently the interventional radiologist has to resort to angiography to (indirectly) monitor the fate of the particles. Here, we introduce intrinsically radiopaque hydrophilic microspheres. Since these microspheres can directly be visualized on X-ray images, using these microspheres for embolization purposes will allow superprecise location of the embolic material, both during and after the procedure. The microspheres, which are prepared by suspension polymerization, are based on the radiopaque monomer 2-[4-iodobenzoyl]-oxo-ethylmethacrylate and hydroxyethylmethacrylate (HEMA) and/or 1-vinyl-2-pyrrolidinone (NVP) as hydrophilic component. It has been shown that for clinically relevant X-ray visibility the spheres should contain at least 20 wt % iodine. At this iodine content, copolymerization with HEMA results in spheres that hardly imbibe water (EQ = 1.08). When HEMA is replaced by NVP, the volume swelling ratio can be significantly increased (to 1.33).


Asunto(s)
Medios de Contraste , Microesferas , Yodobencenos/química , Metacrilatos/química , Pirrolidinonas/química , Rayos X
17.
Nat Chem ; 10(8): 897, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29991809

RESUMEN

In the version of this Article originally published, on the right side of Fig. 4b, the 'Aromatic cycle' label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article.

18.
Nat Chem ; 10(8): 804-812, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29941905

RESUMEN

The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure-performance descriptors for processes that they catalyse has been a matter of intense debate, both in industry and academia, and the direct conversion of methanol to olefins is a prototypical system in which various catalytic functions contribute to the overall performance. Propylene selectivity and resistance to coking are the two most important parameters in developing new methanol-to-olefin catalysts. Here, we present a systematic investigation on the effect of acidity on the performance of the zeolite 'ZSM-5' for the production of propylene. Our results demonstrate that the isolation of Brønsted acid sites is key to the selective formation of propylene. Also, the introduction of Lewis acid sites prevents the formation of coke, hence drastically increasing catalyst lifetime.

19.
J Am Chem Soc ; 129(50): 15631-8, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18027942

RESUMEN

We provide detailed insight into complex supramolecular assembly processes by fully characterizing a multicomponent model system using dynamic light scattering, cryogenic transmission electron microscopy, atomic force microscopy, and various NMR techniques. First, a preassembly of a host molecule (the fifth-generation urea-adamantyl poly(propylene imine) dendrimer) and 32 guest molecules (a water- and chloroform-soluble ureidoacetic acid guest) was made in chloroform. The association constant in chloroform is concealed by guest self-association and is therefore higher than 10(3) M(-1). Via the neat state the single-host complex was transferred to water, where larger dendrimer-based assemblies were formed. The core of these assemblies, consisting of multiple host molecules (on average three), is kinetically trapped upon dissolution in water, and its size is constant irrespective of the concentration. The guest molecules forming the corona of the assemblies, however, stay dynamic since they are still in rapid exchange on the NMR time scale, as they were in chloroform. A stepwise noncovalent synthesis provides a means to obtain metastable dynamic supramolecular assemblies in water, structures that cannot be formed in one step.


Asunto(s)
Dendrímeros/química , Agua/química , Cloroformo/química , Simulación por Computador , Microscopía por Crioelectrón , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Modelos Químicos , Estructura Molecular , Volumetría
20.
Chem Mater ; 29(9): 4091-4096, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28539702

RESUMEN

Hierarchical ZSM-5 zeolite is hydrothermally synthesized in a single step with cetyltrimethylammonium (CTA) hydroxide acting as mesoporogen and structure-directing agent. Essential to this synthesis is the replacement of NaOH with KOH. An in-depth solid-state NMR study reveals that, after early electrostatic interaction between condensed silica and the head group of CTA, ZSM-5 crystallizes around the structure-directing agent. The crucial aspect of using KOH instead of NaOH lies in the faster dissolution of silica, thereby providing sufficient nutrients for zeolite nucleation. The hierarchical ZSM-5 zeolite contains mesopores and shows excellent catalytic performance in the methanol-to-hydrocarbons reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA