Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(1): 32-43, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33220235

RESUMEN

The last few years have witnessed an increasing body of evidence that challenges the traditional view that immunological memory is an exclusive trait of the adaptive immune system. Myeloid cells can show increased responsiveness upon subsequent stimulation with the same or a different stimulus, well after the initial challenge. This de facto innate immune memory has been termed "trained immunity" and is involved in infections, vaccination and inflammatory diseases. Trained immunity is based on two main pillars: the epigenetic and metabolic reprogramming of cells. In this review we discuss the latest insights into the epigenetic mechanisms behind the induction of trained immunity, as well as the role of different cellular metabolites and metabolic networks in the induction, regulation and maintenance of trained immunity.


Asunto(s)
Reprogramación Celular/inmunología , Enfermedades del Sistema Inmune/inmunología , Sistema Inmunológico/metabolismo , Redes y Vías Metabólicas/inmunología , Células Mieloides/inmunología , Animales , Epigénesis Genética , Humanos , Inmunidad Innata , Memoria Inmunológica
2.
Nature ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232165

RESUMEN

Systemic immune responses caused by chronic hypercholesterolaemia contribute to atherosclerosis initiation, progression and complications1. However, individuals often change their dietary habits over time2, and the effects of an alternating high-fat diet (HFD) on atherosclerosis remain unclear. Here, to address this relevant issue, we developed a protocol using atherosclerosis-prone mice to compare an alternating versus continuous HFD while maintaining similar overall exposure periods. We found that an alternating HFD accelerated atherosclerosis in Ldlr-/- and Apoe-/- mice compared with a continuous HFD. This pro-atherogenic effect of the alternating HFD was also observed in Apoe-/-Rag2-/- mice lacking T, B and natural killer T cells, ruling out the role of the adaptive immune system in the observed phenotype. Discontinuing the HFD in the alternating HFD group downregulated RUNX13, promoting inflammatory signalling in bone marrow myeloid progenitors. After re-exposure to an HFD, these cells produced IL-1ß, leading to emergency myelopoiesis and increased neutrophil levels in blood. Neutrophils infiltrated plaques and released neutrophil extracellular traps, exacerbating atherosclerosis. Specific depletion of neutrophils or inhibition of IL-1ß pathways abolished emergency myelopoiesis and reversed the pro-atherogenic effects of the alternating HFD. This study highlights the role of IL-1ß-dependent neutrophil progenitor reprogramming in accelerated atherosclerosis induced by alternating HFD.

3.
Cell ; 155(3): 606-20, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243018

RESUMEN

Transcription of coregulated genes occurs in the context of long-range chromosomal contacts that form multigene complexes. Such contacts and transcription are lost in knockout studies of transcription factors and structural chromatin proteins. To ask whether chromosomal contacts are required for cotranscription in multigene complexes, we devised a strategy using TALENs to cleave and disrupt gene loops in a well-characterized multigene complex. Monitoring this disruption using RNA FISH and immunofluorescence microscopy revealed that perturbing the site of contact had a direct effect on transcription of other interacting genes. Unexpectedly, this effect on cotranscription was hierarchical, with dominant and subordinate members of the multigene complex engaged in both intra- and interchromosomal contact. This observation reveals the profound influence of these chromosomal contacts on the transcription of coregulated genes in a multigene complex.


Asunto(s)
Cromosomas , Regulación de la Expresión Génica , Técnicas Genéticas , Análisis de la Célula Individual , Transcripción Genética , Cromosomas/química , Desoxirribonucleasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hibridación Fluorescente in Situ , Proteínas Represoras/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(37): e2210321119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36001732

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.


Asunto(s)
COVID-19 , Proteínas de Unión al ADN , Inmunidad Innata , Virus de la Influenza A , Gripe Humana , ARN Largo no Codificante , SARS-CoV-2 , Factores de Transcripción , COVID-19/genética , COVID-19/inmunología , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunidad Innata/genética , Virus de la Influenza A/inmunología , Gripe Humana/genética , Gripe Humana/inmunología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , SARS-CoV-2/inmunología , Factores de Transcripción/metabolismo
5.
Am J Transplant ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147201

RESUMEN

The innate immune system plays an essential role in regulating the immune responses to kidney transplantation, but the mechanisms through which innate immune cells influence long-term graft survival are unclear. The current study highlights the vital role of trained immunity in kidney allograft survival. Trained immunity describes the epigenetic and metabolic changes that innate immune cells undergo following an initial stimulus, allowing them have a stronger inflammatory response to subsequent stimuli. We stimulated healthy peripheral blood mononuclear cells with pretransplant and posttransplant serum of kidney transplant patients and immunosuppressive drugs in an in vitro trained immunity assay and measured tumor necrosis factor and interleukin 6 cytokine levels in the supernatant as a readout for trained immunity. We show that the serum of kidney transplant recipients collected 1 week after transplantation can suppress trained immunity. Importantly, we found that kidney transplant recipients whose serum most strongly suppressed trained immunity rarely experienced graft loss. This suppressive effect of posttransplant serum is likely mediated by previously unreported effects of immunosuppressive drugs. Our findings provide mechanistic insights into the role of innate immunity in kidney allograft survival, uncovering trained immunity as a potential therapeutic target for improving graft survival.

6.
J Cell Sci ; 135(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35833493

RESUMEN

Nuclear-encoded mitochondrial protein mRNAs have been found to be localized and locally translated within neuronal processes. However, the mechanism of transport for those mRNAs to distal locations is not fully understood. Here, we describe axonal co-transport of Cox7c with mitochondria. Fractionation analysis and single-molecule fluorescence in situ hybridization (smFISH) assay revealed that endogenous mRNA encoding Cox7c was preferentially associated with mitochondria in a mouse neuronal cell line and within mouse primary motor neuron axons, whereas other mRNAs that do not encode mitochondrial protein were much less associated. Live-cell imaging of MS2-tagged Cox7c mRNA further confirmed the preferential colocalization and co-transport of Cox7c mRNA with mitochondria in motor neuron axons. Intriguingly, the coding region, rather than the 3' untranslated region (UTR), was the key domain for the co-transport. Our results reveal that Cox7c mRNA can be transported with mitochondria along significant distances and that its coding region is a major recognition feature. This is consistent with the idea that mitochondria can play a vital role in spatial regulation of the axonal transcriptome at distant neuronal sites.


Asunto(s)
Axones , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias , Regiones no Traducidas 3'/genética , Animales , Axones/metabolismo , Hibridación Fluorescente in Situ , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Am J Hum Genet ; 107(5): 802-814, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33022222

RESUMEN

The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.


Asunto(s)
Cromosomas Humanos Par 17/química , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Retinitis Pigmentosa/genética , Factores de Transcripción/genética , Adulto , Secuencia de Aminoácidos , Diferenciación Celular , Reprogramación Celular , Niño , Mapeo Cromosómico , Estudios de Cohortes , Elementos de Facilitación Genéticos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Genes Dominantes , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Polimorfismo Genético , Cultivo Primario de Células , Células Fotorreceptoras Retinianas Conos/patología , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factores de Transcripción/metabolismo , Secuenciación Completa del Genoma
8.
Traffic ; 21(5): 375-385, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32170988

RESUMEN

Localization-based super-resolution microscopy relies on the detection of individual molecules cycling between fluorescent and non-fluorescent states. These transitions are commonly regulated by high-intensity illumination, imposing constrains to imaging hardware and producing sample photodamage. Here, we propose single-molecule self-quenching as a mechanism to generate spontaneous photoswitching. To demonstrate this principle, we developed a new class of DNA-based open-source super-resolution probes named super-beacons, with photoswitching kinetics that can be tuned structurally, thermally and chemically. The potential of these probes for live-cell compatible super-resolution microscopy without high-illumination or toxic imaging buffers is revealed by imaging interferon inducible transmembrane proteins (IFITMs) at sub-100 nm resolutions.


Asunto(s)
Parpadeo , ADN , Microscopía Fluorescente , Colorantes Fluorescentes
9.
Trends Genet ; 33(6): 375-377, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28359583

RESUMEN

How does the non-coding portion of the genome contribute to the regulation of genome architecture? A recent paper by Tan et al. focuses on the relationship between cis-acting complex-trait-associated lincRNAs and the formation of chromosomal contacts in topologically associating domains (TADs).


Asunto(s)
Cromosomas/genética , Elementos de Facilitación Genéticos , ARN Largo no Codificante/genética , Epigénesis Genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos/genética
10.
J Infect Dis ; 209(5): 754-63, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24133190

RESUMEN

BACKGROUND: Statins are cholesterol-lowering drugs, targeting HMG-CoA reductase, thereby reducing the risk of coronary disorders and hypercholesterolemia. However, they also can influence immunologic responses. METHODS: Peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) were isolated from patients with familial hypercholesterolemia (FH) during statin therapy. After infection of cells with Mycobacterium tuberculosis, bacterial burden was determined. In vivo, mice were treated with statins before aerosol-based infection with M. tuberculosis and were monitored for disease progression. RESULTS: PBMCs and MDMs from patients with FH receiving statin therapy were more resistant to M. tuberculosis infection, with reduced bacterial burdens, compared with those of healthy donors. Moreover, statin treatment in experimental murine M. tuberculosis infection studies increased host protection, with reduced lung burdens and improved histopathologic findings. Mechanistically, metabolic rescue experiments demonstrated that statins reduce membrane cholesterol levels, particularly by the mevalonate-isoprenoid arm of the sterol pathway. This promoted phagosomal maturation (EEA-1/Lamp-3) and autophagy (LC3-II), as shown by confocal microscopy and Western blot in macrophages. In addition, inhibitors of phagosome and autophagosome maturation reversed the beneficial effect of statins on bacterial growth. CONCLUSION: These results suggest that statin-mediated reduction in cholesterol levels within phagosomal membranes counteract M. tuberculosis-induced inhibition of phagosomal maturation and promote host-induced autophagy, thereby augmenting host protection against tuberculosis.


Asunto(s)
Autofagia/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Macrófagos/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Fagosomas/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Animales , Colesterol/metabolismo , Farmacorresistencia Bacteriana/fisiología , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Fagosomas/metabolismo , Fagosomas/microbiología , Tuberculosis/metabolismo , Tuberculosis/microbiología
11.
Nat Genet ; 56(1): 85-99, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092881

RESUMEN

Inflammation is characterized by a biphasic cycle consisting initially of a proinflammatory phase that is subsequently resolved by anti-inflammatory processes. Interleukin-1ß (IL-1ß) is a master regulator of proinflammation and is encoded within the same topologically associating domain (TAD) as IL-37, which is an anti-inflammatory cytokine that opposes the function of IL-1ß. Within this TAD, we identified a long noncoding RNA called AMANZI, which negatively regulates IL-1ß expression and trained immunity through the induction of IL37 transcription. We found that the activation of IL37 occurs through the formation of a dynamic long-range chromatin contact that leads to the temporal delay of anti-inflammatory responses. The common variant rs16944 present in AMANZI augments this regulatory circuit, predisposing individuals to enhanced proinflammation or immunosuppression. Our work illuminates a chromatin-mediated biphasic circuit coordinating expression of IL-1ß and IL-37, thereby regulating two functionally opposed states of inflammation from within a single TAD.


Asunto(s)
Cromatina , Inflamación , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Cromatina/genética , Inflamación/genética , Inflamación/metabolismo , Citocinas , Antiinflamatorios , Interleucina-1/metabolismo
12.
Cell Rep ; 43(9): 114664, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178113

RESUMEN

Trained immunity is characterized by histone modifications and metabolic changes in innate immune cells following exposure to inflammatory signals, leading to heightened responsiveness to secondary stimuli. Although our understanding of the molecular regulation of trained immunity has increased, the role of adaptive immune cells herein remains largely unknown. Here, we show that T cells modulate trained immunity via cluster of differentiation 40-tissue necrosis factor receptor-associated factor 6 (CD40-TRAF6) signaling. CD40-TRAF6 inhibition modulates functional, transcriptomic, and metabolic reprogramming and modifies histone 3 lysine 4 trimethylation associated with trained immunity. Besides in vitro studies, we reveal that single-nucleotide polymorphisms in the proximity of CD40 are linked to trained immunity responses in vivo and that combining CD40-TRAF6 inhibition with cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4-Ig)-mediated co-stimulatory blockade induces long-term graft acceptance in a murine heart transplantation model. Combined, our results reveal that trained immunity is modulated by CD40-TRAF6 signaling between myeloid and adaptive immune cells and that this can be leveraged for therapeutic purposes.

13.
Cell Rep Methods ; 3(11): 100640, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37963461

RESUMEN

Macrophages provide a first line of defense against invading pathogens, including the leading cause of bacterial mortality, Mycobacterium tuberculosis (Mtb). A challenge for quantitative characterization of host-pathogen processes in differentially polarized primary human monocyte-derived macrophages (MDMs) is their heterogeneous morphology. Here, we describe the use of microfabricated patterns that constrain the size and shape of cells, mimicking the physiological spatial confinement cells experience in tissues, to quantitatively characterize interactions during and after phagocytosis at the single-cell level at high resolution. Comparing pro-inflammatory (M1) and anti-inflammatory (M2) MDMs, we find interferon-γ stimulation increases the phagocytic contraction, while contraction and bacterial uptake decrease following silencing of phagocytosis regulator NHLRC2 or bacterial surface lipid removal. We identify host organelle position alterations within infected MDMs and differences in Mtb subcellular localization in line with M1 and M2 cellular polarity. Our approach can be adapted to study other host-pathogen interactions and coupled with downstream automated analytical approaches.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Macrófagos , Tuberculosis/microbiología , Fagocitosis , Interferón gamma
14.
Front Immunol ; 12: 662565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34046034

RESUMEN

Mammals face and overcome an onslaught of endogenous and exogenous challenges in order to survive. Typical immune cells and barrier cells, such as epithelia, must respond rapidly and effectively to encountered pathogens and aberrant cells to prevent invasion and eliminate pathogenic species before they become overgrown and cause harm. On the other hand, inappropriate initiation and failed termination of immune cell effector function in the absence of pathogens or aberrant tissue gives rise to a number of chronic, auto-immune, and neoplastic diseases. Therefore, the fine control of immune effector functions to provide for a rapid, robust response to challenge is essential. Importantly, immune cells are heterogeneous due to various factors relating to cytokine exposure and cell-cell interaction. For instance, tissue-resident macrophages and T cells are phenotypically, transcriptionally, and functionally distinct from their circulating counterparts. Indeed, even the same cell types in the same environment show distinct transcription patterns at the single cell level due to cellular noise, despite being robust in concert. Additionally, immune cells must remain quiescent in a naive state to avoid autoimmunity or chronic inflammatory states but must respond robustly upon activation regardless of their microenvironment or cellular noise. In recent years, accruing evidence from next-generation sequencing, chromatin capture techniques, and high-resolution imaging has shown that local- and long-range genome architecture plays an important role in coordinating rapid and robust transcriptional responses. Here, we discuss the local- and long-range genome architecture of immune cells and the resultant changes upon pathogen or antigen exposure. Furthermore, we argue that genome structures contribute functionally to rapid and robust responses under noisy and distinct cellular environments and propose a model to explain this phenomenon.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Genoma/inmunología , Genómica , Inmunidad/genética , Animales , Comunicación Celular/inmunología , Citocinas/inmunología , Humanos , Inmunidad/inmunología , Ratones , Fenotipo , Linfocitos T/inmunología
15.
Methods Mol Biol ; 2157: 197-212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32820405

RESUMEN

The organization of the eukaryotic nucleus facilitates functional chromatin contacts which regulate gene transcription. Despite this being extensively studied through population-based chromatin contact mapping and microscopic observations in single cells, the spatiotemporal dynamics of chromatin behavior have largely remained elusive. The current methods to label and observe specific endogenous genomic loci in living cells have been challenging to implement and too invasive to biological processes. In this protocol, we describe the use of a recently developed DNA labelling strategy (ANCHOR) with CRISPR/Cas9 gene editing, to discreetly label genes for live cell imaging to study chromatin dynamics. Our approach improves on some of the fundamental shortfalls associated with current labelling strategies and has the potential for multiplexed observations.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Microscopía/métodos , Edición Génica/métodos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Reacción en Cadena de la Polimerasa
16.
Cell Rep Methods ; 1(5): 100068, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35474672

RESUMEN

Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immunolabeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-protein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribution variation, allowing for the characterization of their localization patterns. Furthermore, we show that our method can be applied to physiological systems such as skeletal muscle fibers.


Asunto(s)
Fibras Musculares Esqueléticas , ARN , ARN/genética , Hibridación Fluorescente in Situ/métodos , ARN Mensajero/genética , Fibras Musculares Esqueléticas/metabolismo , Transporte de Proteínas
17.
Genome Med ; 13(1): 94, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034819

RESUMEN

BACKGROUND: The interleukin (IL)-1 pathway is primarily associated with innate immunological defense and plays a major role in the induction and regulation of inflammation. Both common and rare genetic variation in this pathway underlies various inflammation-mediated diseases, but the role of rare variants relative to common variants in immune response variability in healthy individuals remains unclear. METHODS: We performed molecular inversion probe sequencing on 48 IL-1 pathway-related genes in 463 healthy individuals from the Human Functional Genomics Project. We functionally grouped common and rare variants, over gene, subpathway, and inflammatory levels and performed the Sequence Kernel Association Test to test for association with in vitro stimulation-induced cytokine responses; specifically, IL-1ß and IL-6 cytokine measurements upon stimulations that represent an array of microbial infections: lipopolysaccharide (LPS), phytohaemagglutinin (PHA), Candida albicans (C. albicans), and Staphylococcus aureus (S. aureus). RESULTS: We identified a burden of NCF4 rare variants with PHA-induced IL-6 cytokine and showed that the respective carriers are in the 1% lowest IL-6 producers. Collapsing rare variants in IL-1 subpathway genes produces a bidirectional association with LPS-induced IL-1ß cytokine levels, which is reflected by a significant Spearman correlation. On the inflammatory level, we identified a burden of rare variants in genes encoding for proteins with an anti-inflammatory function with S. aureus-induced IL-6 cytokine. In contrast to these rare variant findings which were based on different types of stimuli, common variant associations were exclusively identified with C. albicans-induced cytokine over various levels of grouping, from the gene, to subpathway, to inflammatory level. CONCLUSIONS: In conclusion, this study shows that functionally grouping common and rare genetic variants enables the elucidation IL-1-mediated biological mechanisms, specifically, for IL-1ß and IL-6 cytokine responses induced by various stimuli. The framework used in this study may allow for the analysis of rare and common genetic variants in a wider variety of (non-immune) complex phenotypes and therefore has the potential to contribute to better understanding of unresolved, complex traits and diseases.


Asunto(s)
Citocinas/genética , Regulación de la Expresión Génica , Variación Genética , Interleucina-1/genética , Interleucina-1/metabolismo , Transducción de Señal , Biomarcadores , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Voluntarios Sanos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunidad Innata , Inmunofenotipificación , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta , Biología de Sistemas/métodos
18.
Bio Protoc ; 10(11): e3639, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659310

RESUMEN

RNA binding proteins (RBPs) interact with cellular mRNAs, controlling various steps throughout the lifetime of these transcripts, including transcription, cellular transport, subcellular localization, translation and degradation. In addition to binding mRNA transcripts, a growing number of RBPs are shown to bind long noncoding RNAs (lncRNAs), controlling key cellular processes, including gene expression and translation of proteins. Current methodologies aimed at identifying and characterizing protein binding partners of specific RNAs of interest typically rely on tagging of the RNA with affinity aptamers, using in vitro transcribed RNA or immobilized oligonucleotides to capture RNA-protein complexes under native conditions. These assays are coupled with mass spectrometry or Western Blot analysis to identify or/and confirm interacting proteins. Here, we describe an alternative approach to identify protein binding partners of mRNAs and large long noncoding RNAs. This approach relies on biochemical pulldown of specific target RNAs and interacting protein partners from cellular lysates coupled with mass spectrometry to identify novel interacting proteins. By using 24-48 ~20 mer biotinylated DNA probes that hybridize to the target RNA, the method ensures high specificity and minimal off target binding. This approach is reproducible and fast and serves as a base for discovery studies to identify proteins that bind to RNAs of interest.

19.
Front Mol Biosci ; 7: 209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32923457

RESUMEN

Mammalian cells display a broad spectrum of phenotypes, morphologies, and functional niches within biological systems. Our understanding of mechanisms at the individual cellular level, and how cells function in concert to form tissues, organs and systems, has been greatly facilitated by centuries of extensive work to classify and characterize cell types. Classic histological approaches are now complemented with advanced single-cell sequencing and spatial transcriptomics for cell identity studies. Emerging data suggests that additional levels of information should be considered, including the subcellular spatial distribution of molecules such as RNA and protein, when classifying cells. In this Perspective piece we describe the importance of integrating cell transcriptional state with tissue and subcellular spatial and temporal information for thorough characterization of cell type and state. We refer to recent studies making use of single cell RNA-seq and/or image-based cell characterization, which highlight a need for such in-depth characterization of cell populations. We also describe the advances required in experimental, imaging and analytical methods to address these questions. This Perspective concludes by framing this argument in the context of projects such as the Human Cell Atlas, and related fields of cancer research and developmental biology.

20.
Curr Opin Cell Biol ; 63: 68-75, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31991317

RESUMEN

The epigenetic and functional reprogramming of immune genes during induction of trained immunity is accompanied by the metabolic rewiring of cellular state. This memory is induced in the hematopoietic niche and propagated to daughter cells, generating epigenetically and metabolically reprogrammed innate immune cells that are greatly enhanced in their capacity to resolve inflammation. In particular, these cells show accumulation of H3K4me3 and H3K27Ac epigenetic marks on multiple immune gene promoters and associated enhancers. However, the mechanism governing how these epigenetic marks accumulate at discrete immune gene loci has been poorly understood, until now. Here, we discuss some recent advances in the regulation of trained immunity, with a particular focus on the mechanistic role of a novel class of long non-coding RNAs in the establishment of epigenetic marks on trained immune gene promoters.


Asunto(s)
Epigenómica/métodos , Inmunidad Innata/genética , Memoria Inmunológica/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA