Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836580

RESUMEN

DNA gyrase, a type II topoisomerase, introduces negative supercoils into DNA using ATP hydrolysis. The highly effective gyrase-targeted drugs, fluoroquinolones (FQs), interrupt gyrase by stabilizing a DNA-cleavage complex, a transient intermediate in the supercoiling cycle, leading to double-stranded DNA breaks. MfpA, a pentapeptide-repeat protein in mycobacteria, protects gyrase from FQs, but its molecular mechanism remains unknown. Here, we show that Mycobacterium smegmatis MfpA (MsMfpA) inhibits negative supercoiling by M. smegmatis gyrase (Msgyrase) in the absence of FQs, while in their presence, MsMfpA decreases FQ-induced DNA cleavage, protecting the enzyme from these drugs. MsMfpA stimulates the ATPase activity of Msgyrase by directly interacting with the ATPase domain (MsGyrB47), which was confirmed through X-ray crystallography of the MsMfpA-MsGyrB47 complex, and mutational analysis, demonstrating that MsMfpA mimics a T (transported) DNA segment. These data reveal the molecular mechanism whereby MfpA modulates the activity of gyrase and may provide a general molecular basis for the action of other pentapeptide-repeat proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Girasa de ADN/metabolismo , Imitación Molecular , Proteínas de Unión al GTP Monoméricas/metabolismo , Mycobacterium/enzimología , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , División del ADN , Proteínas de Unión al GTP Monoméricas/química , Conformación Proteica
2.
J Infect Dis ; 225(4): 608-616, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34558604

RESUMEN

BACKGROUND: Resistance to anti-tuberculosis (TB) drugs is a major issue in TB control, and demands the discovery of new drugs targeting the virulence factor ESX-1. METHODS: We first established a high-throughput screen (HTS) assay for the discovery of ESX-1 secretion inhibitors. The positive hits were then evaluated for the potency of diminishing the survival of virulent mycobacteria and reducing bacterial virulence. We further investigated the probability of inducing drug resistance and the underlying mechanism using mycobacterial protein fragment complementation. RESULTS: A robust HTS assay was developed to identify small molecules that inhibit ESX-1 secretion without impairing bacterial growth in vitro. A hit named IMB-BZ specifically inhibits the secretion of CFP-10 and reduces virulence in an ESX-1-dependent manner, therefore resulting in significant reduction in intracellular and in vivo survival of mycobacteria. Blocking the CFP-10-EccCb1 interaction directly or indirectly underlies the inhibitory effect of IMB-BZ on the secretion of CFP-10. Importantly, our finding shows that the ESX-1 inhibitors pose low risk of drug resistance development by mycobacteria in vitro as compared with traditional anti-TB drugs, and exhibit high potency against chronic mycobacterial infection. CONCLUSIONS: Targeting ESX-1 may lead to the development of novel therapeutics for tuberculosis. IMB-BZ holds the potential for future development into a new anti-TB drug.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Sistemas de Secreción Tipo VII/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Humanos , Tuberculosis/tratamiento farmacológico , Virulencia
3.
Mol Microbiol ; 111(6): 1529-1543, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30838726

RESUMEN

Bacterial antibiotic resistance, a global health threat, is caused by plasmid transfer or genetic mutations. Quinolones are important antibiotics, partially because they are fully synthetic and resistance genes are unlikely to exist in nature; nonetheless, quinolone resistance proteins have been identified. The mechanism by which plasmid-borne quinolone resistance proteins promotes the selection of quinolone-resistant mutants is unclear. Here, we show that QnrB increases the bacterial mutation rate. Transcriptomic and genome sequencing analyses showed that QnrB promoted gene abundance near the origin of replication (oriC). In addition, the QnrB expression level correlated with the replication origin to terminus (oriC/ter) ratio, indicating QnrB-induced DNA replication stress. Our results also show that QnrB is a DnaA-binding protein that may act as an activator of DNA replication initiation. Interaction of QnrB with DnaA promoted the formation of the DnaA-oriC open complex, which leads to DNA replication over-initiation. Our data indicate that plasmid-borne QnrB increases bacterial mutation rates and that genetic changes can alleviate the fitness cost imposed by transmitted plasmids. Derivative mutations may impair antibiotic efficacy and threaten the value of antibiotic treatments. Enhanced understanding of how bacteria adapt to the antibiotic environment will lead to new therapeutic strategies for antibiotic-resistant infections.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Tasa de Mutación , ADN Bacteriano/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Perfilación de la Expresión Génica , Aptitud Genética , Mutación , Plásmidos/genética , Quinolonas/farmacología , Origen de Réplica , Secuenciación Completa del Genoma
4.
PLoS Pathog ; 13(7): e1006515, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28753640

RESUMEN

We have previously shown that the Mycobacterium tuberculosis universal stress protein Rv2623 regulates mycobacterial growth and may be required for the establishment of tuberculous persistence. Here, yeast two-hybrid and affinity chromatography experiments have demonstrated that Rv2623 interacts with one of the two forkhead-associated domains (FHA I) of Rv1747, a putative ATP-binding cassette transporter annotated to export lipooligosaccharides. FHA domains are signaling protein modules that mediate protein-protein interactions to modulate a wide variety of biological processes via binding to conserved phosphorylated threonine (pT)-containing oligopeptides of the interactors. Biochemical, immunochemical and mass spectrometric studies have shown that Rv2623 harbors pT and specifically identified threonine 237 as a phosphorylated residue. Relative to wild-type Rv2623 (Rv2623WT), a mutant protein in which T237 has been replaced with a non-phosphorylatable alanine (Rv2623T237A) exhibits decreased interaction with the Rv1747 FHA I domain and diminished growth-regulatory capacity. Interestingly, compared to WT bacilli, an M. tuberculosis Rv2623 null mutant (ΔRv2623) displays enhanced expression of phosphatidyl-myo-inositol mannosides (PIMs), while the ΔRv1747 mutant expresses decreased levels of PIMs. Animal studies have previously shown that ΔRv2623 is hypervirulent, while ΔRv1747 is growth-attenuated. Collectively, these data have provided evidence that Rv2623 interacts with Rv1747 to regulate mycobacterial growth; and this interaction is mediated via the recognition of the conserved Rv2623 pT237-containing FHA-binding motif by the Rv1747 FHA I domain. The divergent aberrant PIM profiles and the opposing in vivo growth phenotypes of ΔRv2623 and ΔRv1747, together with the annotated lipooligosaccharide exporter function of Rv1747, suggest that Rv2623 interacts with Rv1747 to modulate mycobacterial growth by negatively regulating the activity of Rv1747; and that Rv1747 might function as a transporter of PIMs. Because these glycolipids are major mycobacterial cell envelope components that can impact on the immune response, our findings raise the possibility that Rv2623 may regulate bacterial growth, virulence, and entry into persistence, at least in part, by modulating the levels of bacillary PIM expression, perhaps through negatively regulating the Rv1747-dependent export of the immunomodulatory PIMs to alter host-pathogen interaction, thereby influencing the fate of M. tuberculosis in vivo.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Proteínas de Unión a Fosfato , Fosforilación , Unión Proteica , Dominios Proteicos , Técnicas del Sistema de Dos Híbridos
5.
Yi Chuan ; 38(10): 918-927, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27806933

RESUMEN

Tuberculosis, caused by the pathogen Mycobacterium tuberculosis, is one of the world's deadliest bacterial infectious disease. It is still a global-health threat, particularly because of the drug-resistant forms. Fluoroquinolones, with target of gyrase, are among the drugs used to treat tuberculosis. However, their widespread use has led to bacterial resistance. The molecular mechanisms of fluoroquinolone resistance in mycobacterium tuberculosis have been reported, such as DNA gyrase mutations, drug efflux pumps system, bacterial cell wall thickness and pentapeptide proteins (MfpA) mediated regulation of gyrase. Mutations in gyrase conferring quinolone resistance play important roles and have been extensively studied. Recent studies have shown that the regulation of DNA gyrase affects mycobacterial drug resistance, but the mechanisms, especially by post-translational modification and regulatory proteins, are poorly understood. In this review, we summarize the fluoroquinolone drug development, and the molecular genetics of fluoroquinolone resistance in mycobacteria. Comprehensive understanding of the mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis will open a new view on understanding drug resistance in mycobacteria and lead to novel strategies to develop new accurate diagnosis methods.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Fluoroquinolonas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Girasa de ADN/genética , Girasa de ADN/metabolismo , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculosis/tratamiento farmacológico
6.
J Proteome Res ; 14(11): 4441-9, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26375486

RESUMEN

Nicotinamide adenine dinucleotide (NAD)-dependent deacetylases (sirtuins) are well conserved from prokaryotes to eukaryotes. Functions and regulations of mammalian sirtuins have been extensively studied and indicate that sirtuins play an important role in regulation of biological processes, whereas functions of mycobacterial sirtuins were less explored. To examine functions of the sirtuin-like protein in mycobacteria, a Mycobacterium smegmatis sirtuin, MSMEG_5175, was overexpressed in a M. smegmatis strain mc(2)155 to generate an MSMEG_5175-overexpression strain (mc(2)155-MS5175) in the present study. The physiological aspects of mc(2)155-MS5175 strain were characterized showing that they had a lower intracellular NAD level and a higher resistance to isoniazid (INH) as compared to mc(2)155 containing empty pMV261 plasmid (mc(2)155-pMV261). Quantitative proteomic analysis was carried out to determine differentially expressed proteins between mc(2)155-pMV261 and mc(2)155-MS5175. Among 3032 identified proteins, overexpression of MSMEG_5175 results in up-regulation of 34 proteins and down-regulation of 72 proteins, which involve in diverse cellular processes including metabolic activation, transcription and translation, antioxidant, and DNA repair. Down-regulation of catalase peroxidase (KatG) expression in both mRNA and protein levels were observed in mc(2)155-MS5175 strain, suggesting that a decrease in cellular NAD content and down-regulation of KatG expression contribute to the higher resistance to INH in mc(2)155-MS5175. Using a combination of immunoprecipitation and proteomic analysis, we found that acetylation in 27 proteins was decreased in mc(2)155-MS5175 as compared to those in mc(2)155-pMV261, suggesting that these proteins including the beta prime subunit of RNA polymerase (rpoC), ribosomal proteins, and metabolic enzymes were substrates of MSMEG_5175. Acetylation changes in rpoC may affect its function and cause changes in global gene transcription. Taken together, these results suggest that MSMEG_5175 regulates diverse cellular processes resulting in an increase in INH resistance in mycobacteria, and provide a useful resource to further biological exploration into functions of protein acetylation in mycobacteria.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Isoniazida/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Sirtuinas/genética , Acetilación , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Catalasa/genética , Catalasa/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Pruebas de Sensibilidad Microbiana , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , NAD/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteómica/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Sirtuinas/aislamiento & purificación , Sirtuinas/metabolismo , Transcripción Genética
7.
J Proteome Res ; 14(3): 1445-54, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25664397

RESUMEN

Tuberculosis (TB) is caused by the ancient pathogen, Mycobacterium tuberculosis, and is one of the most serious infectious diseases in the world. Isoniazid (INH) is an important first-line drug for the treatment of active and latent TB. INH resistance is an increasing problem in the treatment of TB. Phenotypic resistance to INH, however, is poorly understood. In this study, we constructed a strain of Mycobacterium bovis BCG that overexpresses the latency-related universal stress protein (USP), BCG_2013, and designated this strain BCG-2013. BCG_2013 overexpression increased susceptibility to INH compared with that of the wild-type strain, BCG-pMV261. Quantitative proteomic analysis revealed that BCG_2013 overexpression resulted in the upregulation of 50 proteins and the downregulation of 26 proteins among the 1500 proteins identified. Upregulation of catalase-peroxidase KatG expression in BCG-2013 was observed and confirmed by qPCR, whereas expression of other INH resistance-related proteins did not change. In addition, differential expression of the mycobacterial persistence regulator MprA and its regulatory proteins was observed. BCG_2013 and katG mRNA levels increased in a Wayne dormancy model, whereas MprA mRNA levels decreased. Taken together, our results suggest that the increase in KatG levels induced by increased BCG_2013 levels underlies the phenotypic susceptibility of mycobacteria to INH.


Asunto(s)
Antituberculosos/farmacología , Isoniazida/farmacología , Mycobacterium bovis/efectos de los fármacos , Proteómica , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Catalasa/química , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Mycobacterium bovis/metabolismo
8.
Nucleic Acids Res ; 41(4): 2370-81, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275532

RESUMEN

DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Girasa de ADN/metabolismo , Fluoroquinolonas/farmacología , Proteínas de Unión al GTP Monoméricas/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Proteínas Bacterianas/fisiología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana , Proteínas de Unión al GTP Monoméricas/fisiología
9.
Wei Sheng Wu Xue Bao ; 54(11): 1279-88, 2014 Nov 04.
Artículo en Zh | MEDLINE | ID: mdl-25752134

RESUMEN

OBJECTIVE: Reactive oxygen species are natural products of metabolism in aerobic organisms, which lead to oxidative damage, such as DNA mutation, protein inactivation and drug resistance. MSMEG_3312 was predicted as a hemerythrin-like protein, which can carry oxygen and reversibly bind to oxygen, thus it might play important roles in the process of oxygen metabolism. In this study, we explored the role of MSMEG_3312 in drug resistance. METHODS: On the basis of bioinformatics, we identified the conserved sequence of HHE domain in MSMEG_3312 and it was predicted to have typical α-helix at secondary structure. To explore potential functions of MSMEG_3312, we constructed the msmeg_3312 knockout strain and compare the susceptibility to various drugs to its parent strain, mc2155. In addition, we also measured the promoter response when treatment of erythromycin. RESULTS: Genetic results showed that MSMEG_3312 is not necessary for M. smegmatis growth at 7H9 rich medium. The msmeg_3312 knockout strain showed increased erythromycin resistance. Moreover, the drug resistance is only limited to erythromycin which its mechanism of action is by binding to the 50S subunit of the bacteria ribosomal complex and then inhibit protein synthesis. However, there were no different MICs of other antibiotics, targets for protein synthesis inhibition, but not 50S subunit, such as tetracyclines, aminoglycosides and chloramphenicol. Moreover, we also showed that the promoter of msmeg_3312 responses to erythromycin. CONCLUSIONS: Hemerythin-like protein MSMEG_3312 is involved in erythromycin resistance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Eritromicina/farmacología , Hemeritrina/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Hemeritrina/química , Hemeritrina/genética , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo , Regiones Promotoras Genéticas , Alineación de Secuencia
10.
Microbiol Spectr ; 11(4): e0536722, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37358434

RESUMEN

Mycobacterium tuberculosis (Mtb) is highly resistant to host oxidative killing. We hypothesized that the evolutionary adaptation of M. smegmatis to hydrogen peroxide (H2O2) would endow the nonpathogenic Mycobacterium persistent in a host. In the study, we screened a highly H2O2-resistant strain (mc2114) via evolutionary H2O2 adaptation in vitro. The MIC of mc2114 to H2O2 is 320 times that of wild-type mc2155. Mouse infection experiments showed that mc2114, similar to Mtb, was persistent in the lungs and caused high lethality in mice with restricted responses of NOX2, ROS, IFN-γ, decreased macrophage apoptosis, and overexpressed inflammatory cytokines in the lungs. Whole-genome sequencing analysis revealed that mc2114 harbored 29 single nucleotide polymorphisms in multiple genes; one of them was on the furA gene that caused FurA deficiency-mediated overexpression of KatG, a catalase-peroxidase to detoxify ROS. Complementation of mc2114 with a wild-type furA gene reversed lethality and hyper-inflammatory response in mice with rescued overexpression of KatG and inflammatory cytokines, whereas NOX2, ROS, IFN-γ, and macrophage apoptosis remained reduced. The results indicate that although FurA regulates KatG expression, it does not contribute significantly to the restriction of ROS response. Instead, FurA deficiency is responsible for the detrimental pulmonary inflammation that contributes to the severity of the infection, a previously nonrecognized function of FurA in mycobacterial pathogenesis. The study also indicates that mycobacterial resistance to oxidative burst results from complex mechanisms involving adaptive genetic changes in multiple genes. IMPORTANCE Mycobacterium tuberculosis (Mtb) causes human tuberculosis (TB), which has killed more people in human history than any other microorganism. However, the mechanisms underlying Mtb pathogenesis and related genes have not yet been fully elucidated, which impedes the development of effective strategies for containing and eradicating TB. In the study, we generated a mutant of M. smegmatis (mc2114) with multiple mutations by an adaptive evolutionary screen with H2O2. One of the mutations in furA caused a deficiency of FurA, which mediated severe inflammatory lung injury and higher lethality in mice by overexpression of inflammatory cytokines. Our results indicate that FurA-regulated pulmonary inflammation plays a critical role in mycobacterial pathogenesis in addition to the known downregulation of NOX2, ROS, IFN-γ responses, and macrophage apoptosis. Further analysis of the mutations in mc2114 would identify more genes related to the increased pathogenicity and help in devising new strategies for containing and eradicating TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Citocinas/genética , Citocinas/metabolismo , Inflamación , Estrés Oxidativo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
11.
Front Cell Infect Microbiol ; 13: 1183597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384221

RESUMEN

Tuberculosis (TB) is a major public health problem, with nearly 10 million new cases and millions of deaths each year. Around 10% of these cases are in children, but only a fraction receive proper diagnosis and treatment. The spread of drug-resistant (DR) strain of TB has made it difficult to control, with only 60% of patients responding to treatment. Multi-drug resistant TB (MDR-TB) is often undiagnosed in children due to lack of awareness or under-diagnosis, and the target for children's DR-TB treatment has only been met in 15% of goals. New medications such as bedaquiline and delamanid have been approved for treating DR-TB. However, due to age and weight differences, adults and children require different dosages. The availability of child-friendly formulations is limited by a lack of clinical data in children. This paper reviews the development history of these drugs, their mechanism of action, efficacy, safety potential problems and current use in treating DR-TB in children.


Asunto(s)
Nitroimidazoles , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Humanos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Diarilquinolinas/uso terapéutico , Nitroimidazoles/uso terapéutico
12.
Microbiol Spectr ; 11(6): e0150223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37843303

RESUMEN

IMPORTANCE: In this study, Vibrio parahaemolyticus strains were collected from a large number of aquatic products globally and found that temperature has an impact on the virulence of these bacteria. As global temperatures rise, mutations in a gene marker called thermolabile hemolysin (tlh) also increase. This suggests that environmental isolates adapt to the warming environment and become more pathogenic. The findings can help in developing tools to analyze and monitor these bacteria as well as assess any link between climate change and vibrio-associated diseases, which could be used for forecasting outbreaks associated with them.


Asunto(s)
Vibriosis , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Virulencia/genética , Proteínas Hemolisinas/genética , Calentamiento Global , Vibriosis/microbiología
13.
Front Cell Infect Microbiol ; 13: 1183590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333849

RESUMEN

Drug-resistant tuberculosis (DR-TB) in children is a growing global health concern, This review provides an overview of the current epidemiology of childhood TB and DR-TB, including prevalence, incidence, and mortality. We discuss the challenges in diagnosing TB and DR-TB in children and the limitations of current diagnostic tools. We summarize the challenges associated with treating multi-drug resistance TB in childhood, including limitations of current treatment options, drug adverse effects, prolonged regimens, and managing and monitoring during treatment. We highlight the urgent need for improved diagnosis and treatment of DR-TB in children. The treatment of children with multidrug-resistant tuberculosis will be expanded to include the evaluation of new drugs or new combinations of drugs. Basic research is needed to support the technological development of biomarkers to assess the phase of therapy, as well as the urgent need for improved diagnostic and treatment options.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Niño , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Prevalencia , Resistencia a Múltiples Medicamentos , Mycobacterium tuberculosis/genética
14.
J Immunol Res ; 2023: 8111355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815950

RESUMEN

Metabolic profiling using nonsputum samples has demonstrated excellent performance in diagnosing infectious diseases. But little is known about the lipid metabolism alternation in children with tuberculosis (TB). Therefore, the study was performed to explore lipid metabolic changes caused by Mycobacterium tuberculosis infection and identify specific lipids as diagnostic biomarkers in children with TB using UHPLC-MS/MS. Plasma samples obtained from 70 active TB children, 21 non-TB infectious disease children, and 21 healthy controls were analyzed by a partial least-squares discriminant analysis model in the training set, and 12 metabolites were identified that can separate children with TB from non-TB controls. In the independent testing cohort with 49 subjects, three of the markers, PC (15:0/17:1), PC (17:1/18:2), and PE (18:1/20:3), presented with high diagnostic values. The areas under the curve of the three metabolites were 0.904, 0.833, and 0.895, respectively. The levels of the altered lipid metabolites were found to be associated with the severity of the TB disease. Taken together, plasma lipid metabolites are potentially useful for diagnosis of active TB in children and would provide insights into the pathogenesis of the disease.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Niño , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Metabolismo de los Lípidos , Biomarcadores , Tuberculosis/diagnóstico , Lípidos
15.
Wei Sheng Wu Xue Bao ; 52(11): 1352-9, 2012 Nov 04.
Artículo en Zh | MEDLINE | ID: mdl-23383506

RESUMEN

OBJECTIVE: A sigma factor is an important component of RNA polymerase complex and is essential for initiation of RNA synthesis. The sigma factors fall into 2 categories: primary sigma factor is essential for bacterial growth and the alterative sigma factor is activated under different environmental conditions. Sigma F (SigF) is one of the sigma factors of Mycobacterium tuberculosis, affecting its virulence and pathogenesis. In contrast, the ortholog of the non-virulent, fast growing strain Mycobacterium smegmatis has been suggested without similar physiology roles. Here, we studied the functions of M. smegmatis SigF. METHODS: sigF knockout Mycobacterium smegmatis strain was constructed by specialized transduction. The wild type, knockout and complementary stains were challenged by oxidative stress and antibiotics. RESULTS: The knockout sigF stain was susceptible oxidative stress, compared to wild type. Furthermore, there was no defect in resistance to antibiotics including isoniazid between the knockout sigF strain and wild type strain. In addition, SigF is required for carotenoid pigment production in M. smegmatis. CONCLUSION: Our data suggested that SigF is important to detoxify the reactive oxygen species, probably through photo-oxidative stress response pathway, which is independent on the pathway that is required for the isoniazid activation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Peróxido de Hidrógeno/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Factor sigma/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Estrés Oxidativo , Factor sigma/genética
16.
Front Genet ; 13: 758304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368697

RESUMEN

Understanding how Mycobacterium tuberculosis has evolved into a professional pathogen is helpful in studying its pathogenesis and for designing vaccines. We investigated how the evolutionary adaptation of M. smegmatis mc251 to an important clinical stressor H2O2 allows bacteria to undergo coordinated genetic mutations, resulting in increased pathogenicity. Whole-genome sequencing identified a mutation site in the fur gene, which caused increased expression of katG. Using a Wayne dormancy model, mc251 showed a growth advantage over its parental strain mc2155 in recovering from dormancy under anaerobic conditions. Meanwhile, the high level of KatG in mc251 was accompanied by a low level of ATP, which meant that mc251 is at a low respiratory level. Additionally, the redox-related protein Rv1996 showed different phenotypes in different specific redox states in M. smegmatis mc2155 and mc251, M. bovis BCG, and M. tuberculosis mc27000. In conclusion, our study shows that the same gene presents different phenotypes under different physiological conditions. This may partly explain why M. smegmatis and M. tuberculosis have similar virulence factors and signaling transduction systems such as two-component systems and sigma factors, but due to the different redox states in the corresponding bacteria, M. smegmatis is a nonpathogen, while M. tuberculosis is a pathogen. As mc251 overcomes its shortcomings of rapid removal, it can potentially be developed as a vaccine vector.

17.
PLoS Pathog ; 5(5): e1000460, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19478878

RESUMEN

Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i) M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii) Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii) Rv2623 binds ATP; and iv) the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis/etiología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Enfermedad Crónica , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Cobayas , Ratones , Proteínas de Unión a Fosfato , Unión Proteica , Tuberculosis/patología
18.
Antibiotics (Basel) ; 10(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34827261

RESUMEN

Tuberculosis, caused by the pathogen Mycobacterium tuberculosis, is a serious infectious disease worldwide. Multidrug-resistant TB (MDR-TB) remains a global problem, and the understanding of this resistance is incomplete. Studies suggested that DNA methylation promotes bacterial adaptability to antibiotic treatment, but the role of mycobacterial HsdM in drug susceptibility has not been explored. Here, we constructed an inactivated Mycobacterium bovis (BCG) strain, ΔhsdM. ΔhsdM shows growth advantages over wild-type BCG under isoniazid treatment and hypoxia-induced stress. Using high-precision PacBio single-molecule real-time sequencing to compare the ΔhsdM and BCG methylomes, we identified 219 methylated HsdM substrates. Bioinformatics analysis showed that most HsdM-modified genes were enriched in respiration- and energy-related pathways. qPCR showed that HsdM-modified genes directly affected their own transcription, indicating an altered redox regulation. The use of the latent Wayne model revealed that ΔhsdM had growth advantages over wild-type BCG and that HsdM regulated trcR mRNA levels, which may be crucial in regulating transition from latency to reactivation. We found that HsdM regulated corresponding transcription levels via gene methylation; thus, altering the mycobacterial redox status and decreasing the bacterial susceptibility to isoniazid, which is closely correlated with the redox status. Our results provide valuable insight into DNA methylation on drug susceptibility.

19.
Front Microbiol ; 12: 780954, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956144

RESUMEN

Rv3197 (MABP-1), a non-canonical ABC protein in Mycobacterium tuberculosis, has ATPase activity and confers inducible resistance to the macrolide family of antibiotics. Here we have shown that MSMEG_1954, the homolog of Rv3197 in M. smegmatis, has a similar function of conferring macrolide resistance. Crystal structures of apo-MSMEG_1954 (form1 and form 2) and MSMEG_1954 in complex with ADP have been determined. These three structures show that MSMEG_1954 has at least two different conformations we identify as closed state (MSMEG_1954-form 1) and open state (MSMEG_1954-form 2 and MSMEG_1954-ADP). Structural superimposition shows that the MSMEG_1954-form 2 and MSMEG_1954-ADP complex have similar conformation to that observed for MABP-1 and MABP-1-erythromicin complex structure. However, the antibiotic binding pocket in MSMEG_1954-form 1 is completely blocked by the N-terminal accessory domain. When bound by ADP, the N-terminal accessory domain undergoes conformational change, which results in the open of the antibiotic binding pocket. Because of the degradation of N terminal accessory domain in MSMSG_1954-form 2, it is likely to represent a transitional state between MSMEG_1954-form 1 and MSMEG_1954-ADP complex structure.

20.
Mol Biol Cell ; 15(7): 3357-65, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15121879

RESUMEN

The mechanism underlying the delivery of ubiquitylated substrates to the proteasome is poorly understood. Rad23 is a putative adaptor molecule for this process because it interacts with ubiquitin chains through its ubiquitin-associated motifs (UBA) and with the proteasome through a ubiquitin-like element (UBL). Here, we demonstrate that the UBL motif of Rad23 also binds Ufd2, an E4 enzyme essential for ubiquitin chain assembly onto its substrates. Mutations in the UBL of Rad23 alter its interactions with Ufd2 and the proteasome, and impair its function in the UFD proteolytic pathway. Furthermore, Ufd2 and the proteasome subunit Rpn1 compete for the binding of Rad23, suggesting that Rad23 forms separate complexes with them. Importantly, we also find that the ability of other UBL/UBA proteins to associate with Ufd2 correlates with their differential involvement in the UFD pathway, suggesting that UBL-mediated interactions may contribute to the substrate specificity of these adaptors. We propose that the UBL motif, a protein-protein interaction module, may be used to facilitate coupling between substrate ubiquitylation and delivery, and to ensure the orderly handoff of the substrate from the ubiquitylation machinery to the proteasome.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Unión Competitiva , Proteínas de Unión al ADN/genética , Datos de Secuencia Molecular , Mutación Puntual/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos , Enzimas Ubiquitina-Conjugadoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA