Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Behav Res Methods ; 56(2): 1052-1063, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36781700

RESUMEN

Optical markerless hand-tracking systems incorporated into virtual reality (VR) headsets are transforming the ability to assess fine motor skills in VR. This promises to have far-reaching implications for the increased applicability of VR across scientific, industrial, and clinical settings. However, so far, there are little data regarding the accuracy, delay, and overall performance of these types of hand-tracking systems. Here we present a novel methodological framework based on a fixed grid of targets, which can be easily applied to measure these systems' absolute positional error and delay. We also demonstrate a method to assess finger joint-angle accuracy. We used this framework to evaluate the Meta Quest 2 hand-tracking system. Our results showed an average fingertip positional error of 1.1cm, an average finger joint angle error of 9.6∘ and an average temporal delay of 45.0 ms. This methodological framework provides a powerful tool to ensure the reliability and validity of data originating from VR-based, markerless hand-tracking systems.


Asunto(s)
Mano , Realidad Virtual , Humanos , Reproducibilidad de los Resultados , Dedos , Interfaz Usuario-Computador
2.
Neuroimage ; 274: 120145, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121374

RESUMEN

Therapeutic options to restore responsiveness in patients with prolonged disorder of consciousness (PDOC) are limited. We have recently shown that a single session of tDCS over M1 delivered at rest can reduce thalamic self-inhibition during motor command following. Here, we build upon this by exploring whether pairing tDCS with a concurrent passive mobilisation protocol can further influence thalamo-M1 dynamics and whether these changes are enhanced after multiple stimulation sessions. Specifically, we used Dynamic Causal Modelling (DCM) of functional magnetic resonance imaging (fMRI) data from 22 healthy participants to assess changes in effective connectivity within the motor network during active thumb movements after 1 or 5 sessions of tDCS paired with passive mobilisations of the thumb. We found that a single anodal tDCS session decreased self-inhibition in M1, with five sessions further enhancing this effect. In addition, anodal tDCS increased thalamo-M1 excitation as compared to cathodal stimulation, with the effects maintained after 5 sessions. Together, our results suggest that pairing anodal tDCS with passive mobilisation across multiple sessions may facilitate thalamo-cortical dynamics that are relevant for behavioural responsiveness in PDOC. More broadly, they offer a mechanistic window into the neural underpinnings of the cumulative effects of multi-session tDCS.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Pulgar , Corteza Motora/fisiología , Encéfalo/fisiología , Estimulación Magnética Transcraneal , Potenciales Evocados Motores/fisiología
3.
Neuroimage ; 247: 118781, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879252

RESUMEN

Transcranial direct current stimulation (tDCS) is attracting increasing interest as a potential therapeutic route for unresponsive patients with prolonged disorders of consciousness (PDOC). However, research to date has had mixed results. Here, we propose a new direction by directly addressing the mechanisms underlying lack of responsiveness in PDOC, and using these to define our targets and the success of our intervention in the healthy brain first. We report 2 experiments that assess whether tDCS to the primary motor cortex (M1-tDCS; Experiment 1) and the cerebellum (cb-tDCS; Experiment 2) administered at rest modulate thalamo-cortical coupling in a subsequent command following task typically used to clinically assess awareness. Both experiments use sham- and polarity-controlled, randomised, double-blind, crossover designs. In Experiment 1, 22 participants received anodal, cathodal, and sham M1-tDCS sessions while in the MRI scanner. A further 22 participants received the same protocol with cb-tDCS in Experiment 2. We used Dynamic Causal Modelling of fMRI to characterise the effects of tDCS on brain activity and dynamics during simple thumb movements in response to command. We found that M1-tDCS increased thalamic excitation and that Cathodal cb-tDCS increased excitatory coupling from thalamus to M1. All these changes were polarity specific. Combined, our experiments demonstrate that tDCS can successfully modulate long range thalamo-cortical dynamics during command following via targeting of cortical regions. This suggests that M1- and cb-tDCS may allow PDOC patients to overcome the motor deficits at the root of their reduced responsiveness, improving their rehabilitation options and quality of life as a result.


Asunto(s)
Trastornos de la Conciencia/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Encéfalo/fisiopatología , Mapeo Encefálico , Cerebelo/fisiopatología , Método Doble Ciego , Estimulación Eléctrica , Potenciales Evocados Motores , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/fisiopatología , Vías Nerviosas , Calidad de Vida , Adulto Joven
4.
J Neurophysiol ; 127(2): 519-528, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044854

RESUMEN

A consistent finding in sensorimotor adaptation is a persistent undershoot of full compensation, such that performance asymptotes with residual errors greater than seen at baseline. This behavior has been attributed to limiting factors within the implicit adaptation system, which reaches a suboptimal equilibrium between trial-by-trial learning and forgetting. However, recent research has suggested that allowing longer motor planning periods prior to movement eliminates these residual errors. The additional planning time allows required cognitive processes to be completed before movement onset, thus increasing accuracy. Here, we looked to extend these findings by investigating the relationship between increased motor preparation time and the size of imposed visuomotor rotation (30°, 45°, or 60°), with regard to the final asymptotic level of adaptation. We found that restricting preparation time to 0.35 s impaired adaptation for moderate and larger rotations, resulting in larger residual errors compared to groups with additional preparation time. However, we found that even extended preparation time failed to eliminate persistent errors, regardless of magnitude of cursor rotation. Thus, the asymptote of adaptation was significantly less than the degree of imposed rotation, for all experimental groups. In addition, there was a positive relationship between asymptotic error and implicit retention. These data suggest that a prolonged motor preparation period is insufficient to reliably achieve complete adaptation, and therefore, our results suggest that factors beyond that of planning time contribute to asymptotic adaptation levels.NEW & NOTEWORTHY Residual errors in sensorimotor adaptation are commonly attributed to an equilibrium between trial-by-trial learning and forgetting. Recent research suggested that allowing sufficient time for mental rotation eliminates these errors. In a number of experimental conditions, we show that although restricted motor preparation time does limit adaptation-consistent with mental rotation-extending preparation time fails to eliminate the residual errors in motor adaptation.


Asunto(s)
Adaptación Fisiológica/fisiología , Imaginación/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
5.
Exp Brain Res ; 239(2): 557-574, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33315127

RESUMEN

Healthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance was related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.


Asunto(s)
Propiocepción , Desempeño Psicomotor , Adaptación Fisiológica , Anciano , Retroalimentación Sensorial , Humanos , Movimiento
6.
Exp Brain Res ; 239(7): 2043-2061, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33909112

RESUMEN

Studies of chronically deafferented participants have illuminated how regaining some motor control after adult-onset loss of proprioceptive and touch input depends heavily on cognitive control. In this study we contrasted the performance of one such man, IW, with KS, a woman born without any somatosensory fibres. We postulated that her life-long absence of proprioception and touch might have allowed her to automate some simple visually-guided actions, something IW appears unable to achieve. We tested these two, and two age-matched control groups, on writing and drawing tasks performed with and without an audio-verbal echoing task that added a cognitive demand. In common with other studies of skilled action, the dual task was shown to affect visuo-motor performance in controls, with less well-controlled drawing and writing, evident as increases in path speed and reduction in curvature and trial duration. We found little evidence that IW was able to automate even the simplest drawing tasks and no evidence for automaticity in his writing. In contrast, KS showed a selective increase in speed of signature writing under the dual-task conditions, suggesting some ability to automate her most familiar writing. We also tested tracing of templates under mirror-reversed conditions, a task that imposes a powerful cognitive planning challenge. Both IW and KS showed evidence of a visuo-motor planning conflict, as did the controls, for shapes with sharp corners. Overall, IW was much faster than his controls to complete tracing shapes, consistent with an absence of visuo-proprioceptive conflict, whereas KS was slower than her controls, especially as the corners became sharper. She dramatically improved after a short period of practice while IW did not. We conclude that KS, who developed from birth without proprioception, may have some visually derived control of movement not under cognitive control, something not seen in IW. This allowed her to automate some writing and drawing actions, but impaired her initial attempts at mirror-tracing. In contrast, IW, who lost somatosensation as an adult, cannot automate these visually guided actions.


Asunto(s)
Propiocepción , Desempeño Psicomotor , Adulto , Femenino , Humanos , Masculino , Tacto
7.
Psychol Res ; 84(4): 866-880, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30406829

RESUMEN

The human nervous system displays such plasticity that we can adapt our motor behavior to various changes in environmental or body properties. However, how sensorimotor adaptation generalizes to new situations and new effectors, and which factors influence the underlying mechanisms, remains unclear. Here we tested the general hypothesis that differences across participants can be exploited to uncover what drives interlimb transfer. Twenty healthy adults adapted to prismatic glasses while reaching to visual targets with their dominant arm. Classic adaptation and generalization across movement directions were observed but transfer to the non-dominant arm was not significant and inter-individual differences were substantial. Interlimb transfer resulted for some participants in a directional shift of non-dominant arm movements that was consistent with an encoding of visuomotor adaptation in extrinsic coordinates. For some other participants, transfer was consistent with an intrinsic coordinate system. Simple and multiple regression analyses showed that a few kinematic parameters such as peak acceleration (or peak velocity) and variability of movement direction were correlated with interlimb transfer. Low peak acceleration and low variability were related to extrinsic transfer, while high peak acceleration and high variability were related to intrinsic transfer. Motor variability was also positively correlated with the magnitude of the after-effect systematically observed on the dominant arm. Overall, these findings on unconstrained movements support the idea that individual movement features could be linked to the sensorimotor adaptation and its generalization. The study also suggests that distinct movement characteristics may be related to different coordinate frames of action representations in the nervous system.


Asunto(s)
Adaptación Fisiológica/fisiología , Efecto Tardío Figurativo/fisiología , Movimiento/fisiología , Transferencia de Experiencia en Psicología/fisiología , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Individualidad , Masculino , Desempeño Psicomotor/fisiología , Adulto Joven
8.
J Physiol ; 597(16): 4309-4324, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31240719

RESUMEN

KEY POINTS: The application of conventional cryogenic magnetoencephalography (MEG) to the study of cerebellar functions is highly limited because typical cryogenic sensor arrays are far away from the cerebellum and naturalistic movement is not allowed in the recording. A new generation of MEG using optically pumped magnetometers (OPMs) that can be worn on the head during movement has opened up an opportunity to image the cerebellar electrophysiological activity non-invasively. We use OPMs to record human cerebellar MEG signals elicited by air-puff stimulation to the eye. We demonstrate robust responses in the cerebellum. OPMs pave the way for studying the neurophysiology of the human cerebellum. ABSTRACT: We test the feasibility of an optically pumped magnetometer-based magnetoencephalographic (OP-MEG) system for the measurement of human cerebellar activity. This is to our knowledge the first study investigating the human cerebellar electrophysiology using optically pumped magnetometers. As a proof of principle, we use an air-puff stimulus to the eyeball in order to elicit cerebellar activity that is well characterized in non-human models. In three subjects, we observe an evoked component at approx. 50 ms post-stimulus, followed by a second component at approx. 85-115 ms post-stimulus. Source inversion localizes both components in the cerebellum, while control experiments exclude potential sources elsewhere. We also assess the induced oscillations, with time-frequency decompositions, and identify additional sources in the occipital lobe, a region expected to be active in our paradigm, and in the neck muscles. Neither of these contributes to the stimulus-evoked responses at 50-115 ms. We conclude that OP-MEG technology offers a promising way to advance the understanding of the information processing mechanisms in the human cerebellum.


Asunto(s)
Cerebelo/fisiología , Magnetoencefalografía , Adulto , Parpadeo , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Exp Brain Res ; 237(2): 531-545, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30478636

RESUMEN

During normal healthy ageing there is a decline in the ability to control simple movements, characterised by increased reaction times, movement durations and variability. There is also growing evidence of age-related proprioceptive loss which may contribute to these impairments. However, this relationship has not been studied in detail for the upper limb. We recruited 20 younger adults (YAs) and 31 older adults (OAs) who each performed 2 tasks on a 2D robotic manipulandum. The first assessed dynamic proprioceptive acuity using active, multi-joint movements constrained by the robot to a pre-defined path. Participants made perceptual judgements of the lateral position of the unseen arm. The second task required fast, accurate and discrete movements to the same targets in the absence of visual feedback of the hand, and without robotic intervention. We predicted that the variable proprioceptive error (uncertainty range) assessed in Task 1 would be increased in physically inactive OAs and would predict increased movement variability in Task 2. Instead we found that physically inactive OAs had larger systematic proprioceptive errors (bias) than YAs (t[33] = 2.8, p = 0.009), and neither proprioceptive uncertainty nor bias was related to motor performance in either age group (all regression model R2 ≤ 0.06). We suggest that previously reported estimates of proprioceptive decline with ageing may be exaggerated by task demands and that the extent of these deficits is unrelated to control of discrete, rapid movement. The relationship between dynamic proprioceptive acuity and movement control in other tasks with greater emphasis on online feedback is still unclear and warrants further investigation.


Asunto(s)
Envejecimiento/fisiología , Actividad Motora/fisiología , Propiocepción/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Anciano , Retroalimentación Sensorial/fisiología , Femenino , Humanos , Masculino , Adulto Joven
10.
Exp Brain Res ; 237(9): 2167-2184, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31209510

RESUMEN

Previous work has highlighted the role of haptic feedback for manual dexterity, in particular for the control of precision grip forces between the index finger and thumb. It is unclear how fine motor skills involving more than just two digits might be affected, especially given that loss of sensation from the hand affects many neurological patients, and impacts on everyday actions. To assess the functional consequences of haptic deficits on multi-digit grasp of objects, we studied the ability of three rare individuals with permanent large-fibre sensory loss involving the entire upper limb. All three reported difficulties in everyday manual actions (ABILHAND questionnaire). Their performance in a reach-grasp-lift task was compared to that of healthy controls. Twenty objects of varying shape, mass, opacity and compliance were used. In the reach-to-grasp phase, we found slower movement, larger grip aperture and less dynamic modulation of grip aperture in deafferented participants compared to controls. Hand posture during the lift phase also differed; deafferented participants often adopted hand postures that may have facilitated visual guidance, and/or reduced control complexity. For example, they would extend fingers that were not in contact with the object, or fold these fingers into the palm of the hand. Variability in hand postures was increased in deafferented participants, particularly for smaller objects. Our findings provide new insights into how the complex control required for whole hand actions is compromised by loss of haptic feedback, whose contribution is, thus, highlighted.


Asunto(s)
Retroalimentación Sensorial/fisiología , Mano/fisiopatología , Destreza Motora/fisiología , Postura/fisiología , Propiocepción/fisiología , Trastornos de la Sensación/fisiopatología , Percepción del Tacto/fisiología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
J Neurosci ; 37(26): 6231-6241, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28546307

RESUMEN

Mounting evidence indicates that posterolateral portions of the cerebellum (right Crus I/II) contribute to language processing, but the nature of this role remains unclear. Based on a well-supported theory of cerebellar motor function, which ascribes to the cerebellum a role in short-term prediction through internal modeling, we hypothesize that right cerebellar Crus I/II supports prediction of upcoming sentence content. We tested this hypothesis using event-related fMRI in male and female human subjects by manipulating the predictability of written sentences. Our design controlled for motor planning and execution, as well as for linguistic features and working memory load; it also allowed separation of the prediction interval from the presentation of the final sentence item. In addition, three further fMRI tasks captured semantic, phonological, and orthographic processing to shed light on the nature of the information processed. As hypothesized, activity in right posterolateral cerebellum correlated with the predictability of the upcoming target word. This cerebellar region also responded to prediction error during the outcome of the trial. Further, this region was engaged in phonological, but not semantic or orthographic, processing. This is the first imaging study to demonstrate a right cerebellar contribution in language comprehension independently from motor, cognitive, and linguistic confounds. These results complement our work using other methodologies showing cerebellar engagement in linguistic prediction and suggest that internal modeling of phonological representations aids language production and comprehension.SIGNIFICANCE STATEMENT The cerebellum is traditionally seen as a motor structure that allows for smooth movement by predicting upcoming signals. However, the cerebellum is also consistently implicated in nonmotor functions such as language and working memory. Using fMRI, we identify a cerebellar area that is active when words are predicted and when these predictions are violated. This area is active in a separate task that requires phonological processing, but not in tasks that require semantic or visuospatial processing. Our results support the idea of prediction as a unifying cerebellar function in motor and nonmotor domains. We provide new insights by linking the cerebellar role in prediction to its role in verbal working memory, suggesting that these predictions involve phonological processing.


Asunto(s)
Cerebelo/fisiología , Lateralidad Funcional/fisiología , Lenguaje , Memoria a Corto Plazo/fisiología , Red Nerviosa/fisiología , Aprendizaje Verbal/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
12.
Exp Brain Res ; 236(4): 997-1006, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29404634

RESUMEN

Anodal cerebellar transcranial direct current stimulation (tDCS) is known to enhance motor learning, and therefore, has been suggested to hold promise as a therapeutic intervention. However, the neural mechanisms underpinning the effects of cerebellar tDCS are currently unknown. We investigated the neural changes associated with cerebellar tDCS using magnetic resonance spectroscopy (MRS). 34 healthy participants were divided into two groups which received either concurrent anodal or sham cerebellar tDCS during a visuomotor adaptation task. The anodal group underwent an additional session involving MRS in which the main inhibitory and excitatory neurotransmitters: GABA and glutamate (Glu) were measured pre-, during, and post anodal cerebellar tDCS, but without the behavioural task. We found no significant group-level changes in GABA or glutamate during- or post-tDCS compared to pre-tDCS levels, however, there was large degree of variability across participants. Although cerebellar tDCS did not affect visuomotor adaptation, surprisingly cerebellar tDCS increased motor memory retention with this being strongly correlated with a decrease in cerebellar glutamate levels during tDCS across participants. This work provides novel insights regarding the neural mechanisms which may underlie cerebellar tDCS, but also reveals limitations in the ability to produce robust effects across participants and between studies.


Asunto(s)
Cerebelo/metabolismo , Ácido Glutámico/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Desempeño Psicomotor/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Ácido gamma-Aminobutírico/metabolismo , Adulto , Cerebelo/diagnóstico por imagen , Femenino , Humanos , Masculino , Adulto Joven
13.
Exp Brain Res ; 236(8): 2137-2155, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29779050

RESUMEN

It is uncertain how vision and proprioception contribute to adaptation of voluntary arm movements. In normal participants, adaptation to imposed forces is possible with or without vision, suggesting that proprioception is sufficient; in participants with proprioceptive loss (PL), adaptation is possible with visual feedback, suggesting that proprioception is unnecessary. In experiment 1 adaptation to, and retention of, perturbing forces were evaluated in three chronically deafferented participants. They made rapid reaching movements to move a cursor toward a visual target, and a planar robot arm applied orthogonal velocity-dependent forces. Trial-by-trial error correction was observed in all participants. Such adaptation has been characterized with a dual-rate model: a fast process that learns quickly, but retains poorly and a slow process that learns slowly and retains well. Experiment 2 showed that the PL participants had large individual differences in learning and retention rates compared to normal controls. Experiment 3 tested participants' perception of applied forces. With visual feedback, the PL participants could report the perturbation's direction as well as controls; without visual feedback, thresholds were elevated. Experiment 4 showed, in healthy participants, that force direction could be estimated from head motion, at levels close to the no-vision threshold for the PL participants. Our results show that proprioceptive loss influences perception, motor control and adaptation but that proprioception from the moving limb is not essential for adaptation to, or detection of, force fields. The differences in learning and retention seen between the three deafferented participants suggest that they achieve these tasks in idiosyncratic ways after proprioceptive loss, possibly integrating visual and vestibular information with individual cognitive strategies.


Asunto(s)
Brazo/fisiopatología , Aprendizaje/fisiología , Movimiento/fisiología , Enfermedades del Sistema Nervioso Periférico/complicaciones , Propiocepción/fisiología , Trastornos de la Sensación/etiología , Adaptación Fisiológica , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Visión Ocular , Percepción Visual/fisiología
14.
J Neurophysiol ; 118(2): 655-665, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28298304

RESUMEN

Cerebellar transcranial direct current stimulation (ctDCS) is known to enhance adaptation to a novel visual rotation (visuomotor adaptation), and it is suggested to hold promise as a therapeutic intervention. However, it is unknown whether this effect is robust across varying task parameters. This question is crucial if ctDCS is to be used clinically, because it must have a consistent and robust effect across a relatively wide range of behaviors. The aim of this study was to examine the effect of ctDCS on visuomotor adaptation across a wide range of task parameters that were systematically varied. Therefore, 192 young healthy individuals participated in 1 of 7 visuomotor adaptation experiments in either an anodal or sham ctDCS group. Each experiment examined whether ctDCS had a positive effect on adaptation when a unique feature of the task was altered: position of the monitor, offline tDCS, use of a tool, and perturbation schedule. Although we initially replicated the previously reported positive effect of ctDCS on visuomotor adaptation, this was not maintained during a second replication study or across a large range of varying task parameters. At the very least, this may call into question the validity of using ctDCS within a clinical context where a robust and consistent effect across behavior would be required.NEW & NOTEWORTHY Cerebellar transcranial direct current stimulation (ctDCS) is known to enhance motor adaptation and thus holds promise as a therapeutic intervention. However, understanding the reliability of ctDCS across varying task parameters is crucial. To examine this, we investigated whether ctDCS enhanced visuomotor adaptation across a range of varying task parameters. We found ctDCS to have no consistent effect on visuomotor adaptation, questioning the validity of using ctDCS within a clinical context.


Asunto(s)
Adaptación Fisiológica/fisiología , Cerebelo/fisiología , Actividad Motora/fisiología , Estimulación Transcraneal de Corriente Directa , Percepción Visual/fisiología , Adaptación Psicológica/fisiología , Adulto , Femenino , Mano/fisiología , Humanos , Masculino , Pruebas Neuropsicológicas , Reproducibilidad de los Resultados
15.
Cerebellum ; 16(1): 203-229, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26873754

RESUMEN

Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.


Asunto(s)
Ganglios Basales/fisiología , Ganglios Basales/fisiopatología , Cerebelo/fisiología , Cerebelo/fisiopatología , Corteza Cerebral/fisiología , Corteza Cerebral/fisiopatología , Animales , Consenso , Humanos , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología
16.
Exp Brain Res ; 235(11): 3403-3416, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28821927

RESUMEN

There is a continuing debate about control of voluntary movement, with conflicted evidence about the balance between control of movement vectors (amplitude control) that implies knowledge of the starting position for accuracy, and equilibrium point or final position control, that is independent of the starting conditions. We tested wrist flexion and extension movements in a man with a chronic peripheral neuronopathy that deprived him of proprioceptive knowledge of his wrist angles. In a series of experiments, we demonstrate that he could scale the amplitude of his wrist movements in flexion/extension, even without visual feedback, and appeared to adopt a strategy of moving via a central wrist position when asked to reach target angles from unknown start locations. When examining the relationship between positional error at the start and end of each movement in long sequences of movements, we report that he appears to have three canonical positions that he can reach relatively successfully, in flexion, in extension and in the centre. These are consistent with end-point or position control. Other positions were reached with errors that suggest amplitude control. Recording wrist flexor and extensor EMG confirmed that the flexion and extension canonical positions were reached by strong flexor and extensor activity, without antagonist activity, and other positions were reached with graded muscle activation levels. The central canonical position does not appear to be reached by either maximal co-contraction or by complete relaxation, but may have been reached by matched low-level co-contraction.


Asunto(s)
Retroalimentación Sensorial/fisiología , Músculo Esquelético/fisiopatología , Polineuropatías/fisiopatología , Propiocepción/fisiología , Muñeca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad
17.
Exp Brain Res ; 235(9): 2843-2855, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28660285

RESUMEN

The 'quiet eye' (QE)-a period of extended gaze fixation on a target-has been reported in many tasks that require accurate aiming. Longer quiet eye durations (QEDs) are reported in experts compared to non-experts and on successful versus less successful trials. The QE has been extensively studied in the field; however, the cognitive mechanisms underlying the QE are not yet fully understood. We investigated the QEDs of ten expert and ten novice archers in the field and in the laboratory using a computer-based archery task. The computer task consisted of shooting archery targets using a joystick. Random 'noise' (visual motion perturbation) was introduced at high and low levels to allow for the controlled examination of the effects of task complexity and processing demands. In this computer task, we also tested an additional group of ten non-archers as controls. In both field and computer tasks, eye movements were measured using electro-oculography. The expert archers exhibited longer QED compared to the novice archers in the field task. In the computer task, the archers again exhibited longer QEDs and were more accurate compared to non-archers. Furthermore, expert archers showed earlier QE onsets and longer QEDs during high noise conditions compared to the novices and non-archers. Our findings show skill-based effects on QED in field conditions and in a novel computer-based archery task, in which online (visual) perturbations modulated experts' QEDs. These longer QEDs in experts may be used for more efficient programming in which accurate predictions are facilitated by attention control.


Asunto(s)
Rendimiento Atlético/fisiología , Atención/fisiología , Fijación Ocular/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
18.
J Neuroeng Rehabil ; 14(1): 127, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29208020

RESUMEN

BACKGROUND: Chronic upper limb motor impairment is a common outcome of stroke. Therapeutic training can reduce motor impairment. Recently, a growing interest in evaluating motor training provided by robotic assistive devices has emerged. Robot-assisted therapy is attractive because it provides a means of increasing practice intensity without increasing the workload of physical therapists. However, movements practised through robotic assistive devices are commonly pre-defined and fixed across individuals. More optimal training may result from individualizing the selection of the trained movements based on the individual's impairment profile. This requires quantitative assessment of the degree of the motor impairment prior to training, in relevant movement tasks. However, standard clinical measures for profiling motor impairment after stroke are often subjective and lack precision. We have developed a novel robot-mediated method for systematic and fine-grained mapping (or profiling) of individual performance across a wide range of planar arm reaching movements. Here we describe and demonstrate this mapping method and its utilization for individualized training. We also present a novel principle for the individualized selection of training movements based on the performance maps. METHODS AND RESULTS: To demonstrate the utility of our method we present examples of 2D performance maps produced from the kinetic and kinematics data of two individuals with stroke-related upper limb hemiparesis. The maps outline distinct regions of high motor impairment. The procedure of map-based selection of training movements and the change in motor performance following training is demonstrated for one participant. CONCLUSIONS: The performance mapping method is feasible to produce (online or offline). The 2D maps are easy to interpret and to be utilized for selecting individual performance-based training. Different performance maps can be easily compared within and between individuals, which potentially has diagnostic utility.


Asunto(s)
Educación y Entrenamiento Físico/métodos , Desempeño Psicomotor , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Extremidad Superior/fisiopatología , Anciano , Algoritmos , Fenómenos Biomecánicos , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Medicina de Precisión , Robótica
19.
J Neurosci ; 35(14): 5471-9, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25855165

RESUMEN

The posterior vermis of the cerebellum is considered to be critically involved in saccadic adaptation. However, recent evidence suggests that the adaptive decrease (backward adaptation) and the adaptive increase (forward adaptation) of saccade amplitude rely on partially separate neural substrates. We investigated whether the posterior cerebellum could be differentially involved in backward and forward adaptation by using transcranial direct current stimulation (TDCS). To do so, participants' saccades were adapted backward or forward while they received anodal, cathodal, or sham TDCS. In two extra groups, subjects underwent a nonadaptation session while receiving anodal or cathodal TDCS to control for the direct effects of TDCS on saccadic execution. Surprisingly, cathodal stimulation tended to increase the extent of both forward and backward adaptations, while anodal TDCS strongly impaired forward adaptation and, to a smaller extent, backward adaptation. Forward adaptation was accompanied by a greater increase in velocity with cathodal stimulation, and reduced duration of change for anodal stimulation. In contrast, the expected velocity decrease in backward adaptation was noticeably weaker with anodal stimulation. Stimulation applied during nonadaptation sessions did not affect saccadic gain, velocity, or duration, demonstrating that the reported effects are not due to direct effects of the stimulation on the generation of eye movements. Our results demonstrate that cerebellar excitability is critical for saccadic adaptation. Based on our results and the growing evidence from studies of vestibulo-ocular reflex and saccadic adaptation, we conclude that the plasticity at the level of the oculomotor vermis is more fundamentally important for forward adaptation than for backward adaptation.


Asunto(s)
Adaptación Fisiológica/fisiología , Cerebelo/fisiología , Movimientos Sacádicos/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Análisis de Varianza , Biofisica , Femenino , Humanos , Rayos Infrarrojos , Masculino , Tiempo de Reacción , Factores de Tiempo , Adulto Joven
20.
Cereb Cortex ; 25(11): 4551-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25979089

RESUMEN

We previously speculated that depression of cerebellar excitability using cathodal transcranial direct current stimulation (tDCS) might release extra cognitive resources via the disinhibition of activity in prefrontal cortex. The objective of the present study was to investigate whether anodal tDCS over the prefrontal cortex could similarly improve performance when cognitive demands are high. Sixty-three right-handed participants in 3 separate groups performed the Paced Auditory Serial Addition Task (PASAT) and the more difficult Paced Auditory Serial Subtraction Task (PASST), before and after 20 min of anodal, cathodal, or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC). Performance was assessed in terms of the accuracy, latency, and variability of correct verbal responses. All behavioral measures significantly improved for the PASST after anodal DLPFC stimulation, but not the PASAT. There were smaller practice effects after cathodal and sham stimulation. Subjective ratings of attention and mental fatigue were unchanged by tDCS over time. We conclude that anodal stimulation over the left DLPFC can selectively improve performance on a difficult cognitive task involving arithmetic processing, verbal working memory, and attention. This result might be achieved by focally improving executive functions and/or cognitive capacity when tasks are difficult, rather than by improving levels of arousal/alertness.


Asunto(s)
Cognición/fisiología , Corteza Prefrontal/fisiología , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Análisis de Varianza , Función Ejecutiva/fisiología , Femenino , Lateralidad Funcional , Humanos , Masculino , Matemática , Pruebas Neuropsicológicas , Tiempo de Reacción/fisiología , Escala Visual Analógica , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA