Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Obes (Lond) ; 45(7): 1618-1622, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33758342

RESUMEN

It has been suggested that metabolic dysfunction in obesity is at least in part driven by adipose tissue (AT) hypoxia. However, studies on AT hypoxia in humans have shown conflicting data. Therefore we aimed to investigate if markers of AT hypoxia were present in the subcutaneous AT of severly obese individuals (class III obesity) with and without hypoventilation syndrome (OHS) in comparison to moderately obese (class I obesity) and lean controls. To provide a proof-of-concept study, we quantified AT hypoxia by hypoxia inducible factor 1 A (HIF1A) protein abundance in human participants ranging from lean to severly obese (class III obesity). On top of that nightly arterial O2 saturation in individuals with obesity OHS was assessed. Subjects with class III obesity (BMI > 40 kg/m2) and OHS exhibited significantly higher adipose HIF1A protein levels versus those with class I obesity (BMI 30-34.9 kg/m2) and lean controls whereas those with class III obesity without OHS showed an intermediate response. HIF1A gene expression was not well correlated with protein abundance. Although these data demonstrate genuine AT hypoxia in the expected pathophysiological context of OHS, we did not observe a hypoxia signal in lesser degrees of obesity suggesting that adipose dysfunction may not be driven by hypoxia in moderate obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Hipoxia de la Célula/genética , Síndrome de Hipoventilación por Obesidad/metabolismo , Obesidad Mórbida/metabolismo , Grasa Subcutánea/metabolismo , Humanos , Transcriptoma/genética
2.
Hepatology ; 67(6): 2167-2181, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29251794

RESUMEN

A hallmark of chronic liver injury is fibrosis, with accumulation of extracellular matrix orchestrated by activated hepatic stellate cells (HSCs). Glucocorticoids limit HSC activation in vitro, and tissue glucocorticoid levels are amplified by 11beta-hydroxysteroid dehydrogenase-1 (11ßHSD1). Although 11ßHSD1 inhibitors have been developed for type 2 diabetes mellitus and improve diet-induced fatty liver in various mouse models, effects on the progression and/or resolution of liver injury and consequent fibrosis have not been characterized. We have used the reversible carbon tetrachloride-induced model of hepatocyte injury and liver fibrosis to show that in two models of genetic 11ßHSD1 deficiency (global, Hsd11b1-/- , and hepatic myofibroblast-specific, Hsd11b1fl/fl /Pdgfrb-cre) 11ßHSD1 pharmacological inhibition in vivo exacerbates hepatic myofibroblast activation and liver fibrosis. In contrast, liver injury and fibrosis in hepatocyte-specific Hsd11b1fl/fl /albumin-cre mice did not differ from that of controls, ruling out 11ßHSD1 deficiency in hepatocytes as the cause of the increased fibrosis. In primary HSC culture, glucocorticoids inhibited expression of the key profibrotic genes Acta2 and Col1α1, an effect attenuated by the 11ßHSD1 inhibitor [4-(2-chlorophenyl-4-fluoro-1-piperidinyl][5-(1H-pyrazol-4-yl)-3-thienyl]-methanone. HSCs from Hsd11b1-/- and Hsd11b1fl/fl /Pdgfrb-cre mice expressed higher levels of Acta2 and Col1α1 and were correspondingly more potently activated. In vivo [4-(2-chlorophenyl-4-fluoro-1-piperidinyl][5-(1H-pyrazol-4-yl)-3-thienyl]-methanone administration prior to chemical injury recapitulated findings in Hsd11b1-/- mice, including greater fibrosis. CONCLUSION: 11ßHSD1 deficiency enhances myofibroblast activation and promotes initial fibrosis following chemical liver injury; hence, the effects of 11ßHSD1 inhibitors on liver injury and repair are likely to be context-dependent and deserve careful scrutiny as these compounds are developed for chronic diseases including metabolic syndrome and dementia. (Hepatology 2018;67:2167-2181).


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasas/deficiencia , Cirrosis Hepática/etiología , Miofibroblastos/fisiología , Animales , Modelos Animales de Enfermedad , Hepatocitos , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Hum Mol Genet ; 22(16): 3269-82, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23595884

RESUMEN

Glucocorticoids are vital for the structural and functional maturation of foetal organs, yet excessive foetal exposure is detrimental to adult cardiovascular health. To elucidate the role of glucocorticoid signalling in late-gestation cardiovascular maturation, we have generated mice with conditional disruption of glucocorticoid receptor (GR) in cardiomyocytes and vascular smooth muscle cells using smooth muscle protein 22-driven Cre recombinase (SMGRKO mice) and compared them with mice with global deficiency in GR (GR(-/-)). Echocardiography shows impaired heart function in both SMGRKO and GR(-/-) mice at embryonic day (E)17.5, associated with generalized oedema. Cardiac ultrastructure is markedly disrupted in both SMGRKO and GR(-/-) mice at E17.5, with short, disorganized myofibrils and cardiomyocytes that fail to align in the compact myocardium. Failure to induce critical genes involved in contractile function, calcium handling and energy metabolism underpins this common phenotype. However, although hearts of GR(-/-) mice are smaller, with 22% reduced ventricular volume at E17.5, SMGRKO hearts are normally sized. Moreover, while levels of mRNA encoding atrial natriuretic peptide are reduced in E17.5 GR(-/-) hearts, they are normal in foetal SMGRKO hearts. These data demonstrate that structural, functional and biochemical maturation of the foetal heart is dependent on glucocorticoid signalling within cardiomyocytes and vascular smooth muscle, though some aspects of heart maturation (size, ANP expression) are independent of GR at these key sites.


Asunto(s)
Corazón Fetal/crecimiento & desarrollo , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Animales , Corticosterona/sangre , Corticosterona/fisiología , Corazón Fetal/fisiología , Corazón/embriología , Corazón/fisiología , Ratones , Ratones Transgénicos , Músculo Liso Vascular/embriología , Músculo Liso Vascular/metabolismo , Contracción Miocárdica , Miocardio/ultraestructura , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miofibrillas/ultraestructura
4.
Nat Commun ; 15(1): 7483, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209825

RESUMEN

Enhancing thermogenic brown adipose tissue (BAT) function is a promising therapeutic strategy for metabolic disease. However, predominantly thermoneutral modern human living conditions deactivate BAT. We demonstrate that selective adipocyte deficiency of the oxygen-sensor HIF-prolyl hydroxylase (PHD2) gene overcomes BAT dormancy at thermoneutrality. Adipocyte-PHD2-deficient mice maintain higher energy expenditure having greater BAT thermogenic capacity. In human and murine adipocytes, a PHD inhibitor increases Ucp1 levels. In murine brown adipocytes, antagonising the major PHD2 target, hypoxia-inducible factor-(HIF)-2a abolishes Ucp1 that cannot be rescued by PHD inhibition. Mechanistically, PHD2 deficiency leads to HIF2 stabilisation and binding of HIF2 to the Ucp1 promoter, thus enhancing its expression in brown adipocytes. Serum proteomics analysis of 5457 participants in the deeply phenotyped Age, Gene and Environment Study reveal that serum PHD2 associates with increased risk of metabolic disease. Here we show that adipose-PHD2-inhibition is a therapeutic strategy for metabolic disease and identify serum PHD2 as a disease biomarker.


Asunto(s)
Tejido Adiposo Pardo , Metabolismo Energético , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Termogénesis , Proteína Desacopladora 1 , Animales , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Humanos , Ratones , Tejido Adiposo Pardo/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Ratones Noqueados , Femenino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Adipocitos/metabolismo , Oxígeno/metabolismo , Ratones Endogámicos C57BL , Adipocitos Marrones/metabolismo , Adulto , Regiones Promotoras Genéticas , Persona de Mediana Edad
5.
J Biol Chem ; 287(6): 4188-97, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22158867

RESUMEN

In obesity, rapidly expanding adipose tissue becomes hypoxic, precipitating inflammation, fibrosis, and insulin resistance. Compensatory angiogenesis may prevent these events. Mice lacking the intracellular glucocorticoid-amplifying enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ßHSD1(-/-)) have "healthier" adipose tissue distribution and resist metabolic disease with diet-induced obesity. Here we show that adipose tissues of 11ßHSD1(-/-) mice exhibit attenuated hypoxia, induction of hypoxia-inducible factor (HIF-1α) activation of the TGF-ß/Smad3/α-smooth muscle actin (α-SMA) signaling pathway, and fibrogenesis despite similar fat accretion with diet-induced obesity. Moreover, augmented 11ßHSD1(-/-) adipose tissue angiogenesis is associated with enhanced peroxisome proliferator-activated receptor γ (PPARγ)-inducible expression of the potent angiogenic factors VEGF-A, apelin, and angiopoietin-like protein 4. Improved adipose angiogenesis and reduced fibrosis provide a novel mechanism whereby suppression of intracellular glucocorticoid regeneration promotes safer fat expansion with weight gain.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Tejido Adiposo/enzimología , Hipoxia/enzimología , Neovascularización Fisiológica , Obesidad/enzimología , Transducción de Señal , Actinas/genética , Actinas/metabolismo , Adipoquinas , Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/patología , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Animales , Apelina , Fibrosis/enzimología , Fibrosis/genética , Fibrosis/fisiopatología , Hipoxia/patología , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Resistencia a la Insulina/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Obesidad/patología , Obesidad/fisiopatología , PPAR gamma/genética , PPAR gamma/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Aumento de Peso/genética
6.
J Innate Immun ; 14(1): 4-30, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33849008

RESUMEN

Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedades Metabólicas , Tejido Adiposo , Humanos , Inmunidad Innata , Inflamación , Células Asesinas Naturales
7.
Am J Physiol Endocrinol Metab ; 300(6): E1076-84, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21406612

RESUMEN

Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11ß-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11ß-HSD1 levels. To identify the specific dietary fats that regulate adipose 11ß-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11ß-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11ß-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11ß-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11ß-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11ß-HSD1. The dynamic depot-selective relationship between adipose 11ß-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/biosíntesis , Tejido Adiposo/enzimología , Tejido Adiposo/fisiología , Composición Corporal/fisiología , Dieta , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Adiposidad , Animales , Corticosterona/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ácidos Grasos/farmacología , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Insaturados/farmacología , Heces/química , Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Resistencia a la Insulina/fisiología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN/biosíntesis , ARN/genética , Receptores de Glucocorticoides/biosíntesis , Receptores de Glucocorticoides/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Aumento de Peso/efectos de los fármacos
8.
Front Cell Dev Biol ; 8: 644, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760729

RESUMEN

Adipose progenitor cells, or preadipocytes, constitute a small population of immature cells within the adipose tissue. They are a heterogeneous group of cells, in which different subtypes have a varying degree of commitment toward diverse cell fates, contributing to white and beige adipogenesis, fibrosis or maintenance of an immature cell phenotype with proliferation capacity. Mature adipocytes as well as cells of the immune system residing in the adipose tissue can modulate the function and differentiation potential of preadipocytes in a contact- and/or paracrine-dependent manner. In the course of obesity, the accumulation of immune cells within the adipose tissue contributes to the development of a pro-inflammatory microenvironment in the tissue. Under such circumstances, the crosstalk between preadipocytes and immune or parenchymal cells of the adipose tissue may critically regulate the differentiation of preadipocytes into white adipocytes, beige adipocytes, or myofibroblasts, thereby influencing adipose tissue expansion and adipose tissue dysfunction, including downregulation of beige adipogenesis and development of fibrosis. The present review will outline the current knowledge about factors shaping cell fate decisions of adipose progenitor cells in the context of obesity-related inflammation.

9.
Mol Endocrinol ; 22(9): 2049-60, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18617597

RESUMEN

11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts inert 11keto-glucocorticoids to active 11beta-hydroxy forms, thereby amplifying intracellular glucocorticoid action. Up-regulation of 11beta-HSD1 in adipose tissue and liver is of pathogenic importance in metabolic syndrome. However, the mechanisms controlling 11beta-HSD1 transcription are poorly understood. Glucocorticoids themselves potently increase 11beta-HSD1 expression in many cells, providing a potential feed-forward system to pathology. We have investigated the molecular mechanisms by which glucocorticoids regulate transcription of 11beta-HSD1, exploiting an A549 cell model system in which endogenous 11beta-HSD1 is expressed and is induced by dexamethasone. We show that glucocorticoid induction of 11beta-HSD1 is indirect and requires new protein synthesis. A glucocorticoid-responsive region maps to between -196 and -88 with respect to the transcription start site. This region contains two binding sites for CCAAT/enhancer-binding protein (C/EBP) that together are essential for the glucocorticoid response and that bind predominantly C/EBPbeta, with C/EBPdelta present in a minority of the complexes. Both C/EBPbeta and C/EBPdelta are rapidly induced by glucocorticoids in A549 cells, but small interfering RNA-mediated knockdown shows that only C/EBPbeta reduction attenuates the glucocorticoid induction of 11beta-HSD1. Chromatin immunoprecipitation studies demonstrated increased binding of C/EBPbeta to the 11beta-HSD1 promoter in A549 cells after glucocorticoid treatment. A similar mechanism may apply in adipose tissue in vivo where increased C/EBPbeta mRNA levels after glucocorticoid treatment were associated with increased 11beta-HSD1 expression. C/EBPbeta is a key mediator of metabolic and inflammatory signaling. Positive regulation of 11beta-HSD1 by C/EBPbeta may link amplification of glucocorticoid action with metabolic and inflammatory pathways and may represent an endogenous innate host-defense mechanism.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Dexametasona/farmacología , Regiones Promotoras Genéticas/efectos de los fármacos , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Proteína delta de Unión al Potenciador CCAAT/genética , Línea Celular , ADN/genética , ADN/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Noqueados , Proopiomelanocortina/deficiencia , Proopiomelanocortina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
J Endocrinol ; 194(1): 161-70, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17592030

RESUMEN

Proopiomelanocortin (POMC) deficiency causes severe obesity through hyperphagia of hypothalamic origin. However, low glucocorticoid levels caused by adrenal insufficiency mitigate against insulin resistance, hyperphagia and fat accretion in Pomc-/- mice. Upon exogenous glucocorticoid replacement, corticosterone-supplemented (CORT) Pomc-/- mice show exaggerated responses, including excessive fat accumulation, hyperleptinaemia and insulin resistance. To investigate the peripheral mechanisms underlying this glucocorticoid hypersensitivity, we examined the expression levels of key determinants and targets of glucocorticoid action in adipose tissue and liver. Despite lower basal expression of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which generates active glucocorticoids within cells, CORT-mediated induction of 11beta-HSD1 mRNA levels was more pronounced in adipose tissues of Pomc-/- mice. Similarly, CORT treatment increased lipoprotein lipase mRNA levels in all fat depots in Pomc-/- mice, consistent with exaggerated fat accumulation. Glucocorticoid receptor (GR) mRNA levels were selectively elevated in liver and retroperitoneal fat of Pomc-/- mice but were corrected by CORT in the latter depot. In liver, CORT increased phosphoenolpyruvate carboxykinase mRNA levels specifically in Pomc-/- mice, consistent with their insulin-resistant phenotype. Furthermore, CORT induced hypertension in Pomc-/- mice, independently of adipose or liver renin-angiotensin system activation. These data suggest that CORT-inducible 11beta-HSD1 expression in fat contributes to the adverse cardiometabolic effects of CORT in POMC deficiency, whereas higher GR levels may be more important in liver.


Asunto(s)
Tejido Adiposo/metabolismo , Corticosterona/uso terapéutico , Glucocorticoides/metabolismo , Hiperfagia/tratamiento farmacológico , Hígado/metabolismo , Proopiomelanocortina/deficiencia , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Corticosterona/metabolismo , Hiperfagia/metabolismo , Hipertensión/etiología , Hipertensión/metabolismo , Resistencia a la Insulina , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Ratones Noqueados , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proopiomelanocortina/genética , ARN Mensajero/análisis , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
13.
Nat Med ; 22(7): 771-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27270587

RESUMEN

The discovery of genetic mechanisms for resistance to obesity and diabetes may illuminate new therapeutic strategies for the treatment of this global health challenge. We used the polygenic 'lean' mouse model, which has been selected for low adiposity over 60 generations, to identify mitochondrial thiosulfate sulfurtransferase (Tst; also known as rhodanese) as a candidate obesity-resistance gene with selectively increased expression in adipocytes. Elevated adipose Tst expression correlated with indices of metabolic health across diverse mouse strains. Transgenic overexpression of Tst in adipocytes protected mice from diet-induced obesity and insulin-resistant diabetes. Tst-deficient mice showed markedly exacerbated diabetes, whereas pharmacological activation of TST ameliorated diabetes in mice. Mechanistically, TST selectively augmented mitochondrial function combined with degradation of reactive oxygen species and sulfide. In humans, TST mRNA expression in adipose tissue correlated positively with insulin sensitivity in adipose tissue and negatively with fat mass. Thus, the genetic identification of Tst as a beneficial regulator of adipocyte mitochondrial function may have therapeutic significance for individuals with type 2 diabetes.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Resistencia a la Insulina/genética , Mitocondrias/metabolismo , Obesidad/genética , Tiosulfato Azufretransferasa/genética , Animales , Diferenciación Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Técnicas de Sustitución del Gen , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Ratones , Ratones Endogámicos , Ratones Transgénicos , Modelos Animales , Terapia Molecular Dirigida , Obesidad/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tiosulfato Azufretransferasa/metabolismo
14.
J Mol Endocrinol ; 34(3): 675-84, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15956339

RESUMEN

Two isozymes of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) interconvert active cortisol and inactive cortisone. 11 beta-HSD2 (renal) acts only as a dehydrogenase, converting cortisol to cortisone. 11 beta-HSD1 (liver) is a bi-directional enzyme in cell homogenates, whereas in intact cells it typically displays oxo-reductase activity, generating cortisol from cortisone. We recently established that cortisone reductase deficiency is a digenic disease requiring mutations in both the gene encoding 11 beta-HSD1 and in the gene for a novel enzyme located within the lumen of the endoplasmic reticulum (ER), hexose-6-phosphate dehydrogenase (H6PDH). This latter enzyme generates NADPH, the co-factor required for oxo-reductase activity. Therefore, we hypothesized that H6PDH expression may be an important determinant of 11 beta-HSD1 oxo-reductase activity. Transient transfection of chinese hamster ovary (CHO) cells with 11 beta-HSD1 resulted in the appearance of both oxo-reductase and dehydrogenase activities in intact cells. Co-transfection of 11 beta-HSD1 with H6PDH increased oxo-reductase activity whilst virtually eliminating dehydrogenase activity. In contrast, H6PDH had no effect on reaction direction of 11 beta-HSD2, nor did the cytosolic enzyme, glucose-6-phosphate dehydrogenase (G6PD) affect 11 beta-HSD1 oxo-reductase activity. Conversely in HEK 293 cells stably transfected with 11 beta-HSD1 cDNA, transfection of an H6PDH siRNA reduced 11 beta-HSD1 oxo-reductase activity whilst simultaneously increasing 11 beta-HSD1 dehydrogenase activity. In human omental preadipocytes obtained from 15 females of variable body mass index (BMI), H6PDH mRNA levels positively correlated with 11 beta-HSD1 oxo-reductase activity, independent of 11 beta-HSD1 mRNA levels. H6PDH expression increased 5.3-fold across adipocyte differentiation (P < 0.05) and was associated with a switch from 11 beta-HSD1 dehydrogenase to oxo-reductase activity. In conclusion, H6PDH is a crucial determinant of 11 beta-HSD1 oxo-reductase activity in intact cells. Through its interaction with 11 beta-HSD1, H6PDH may represent a novel target in the pathogenesis and treatment of obesity.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Adulto , Animales , Secuencia de Bases , Western Blotting , Células CHO , Deshidrogenasas de Carbohidratos/genética , Cricetinae , Cartilla de ADN , Femenino , Humanos , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Interferente Pequeño/genética
15.
Diabetes ; 64(3): 733-45, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25377876

RESUMEN

Prolyl hydroxylase enzymes (PHDs) sense cellular oxygen upstream of hypoxia-inducible factor (HIF) signaling, leading to HIF degradation in normoxic conditions. In this study, we demonstrate that adipose PHD2 inhibition plays a key role in the suppression of adipocyte lipolysis. Adipose Phd2 gene ablation in mice enhanced adiposity, with a parallel increase in adipose vascularization associated with reduced circulating nonesterified fatty acid levels and normal glucose homeostasis. Phd2 gene-depleted adipocytes exhibited lower basal lipolysis in normoxia and reduced ß-adrenergic-stimulated lipolysis in both normoxia and hypoxia. A selective PHD inhibitor suppressed lipolysis in murine and human adipocytes in vitro and in vivo in mice. PHD2 genetic ablation and pharmacological inhibition attenuated protein levels of the key lipolytic effectors hormone-sensitive lipase and adipose triglyceride lipase (ATGL), suggesting a link between adipocyte oxygen sensing and fatty acid release. PHD2 mRNA levels correlated positively with mRNA levels of AB-hydrolase domain containing-5, an activator of ATGL, and negatively with mRNA levels of lipid droplet proteins, perilipin, and TIP47 in human subcutaneous adipose tissue. Therapeutic pseudohypoxia caused by PHD2 inhibition in adipocytes blunts lipolysis and promotes benign adipose tissue expansion and may have therapeutic applications in obesity or lipodystrophy.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/citología , Lipólisis/fisiología , Tejido Adiposo/metabolismo , Adulto , Animales , Ácidos Grasos no Esterificados/metabolismo , Femenino , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Immunoblotting , Inmunohistoquímica , Lipasa/metabolismo , Masculino , Ratones , Persona de Mediana Edad
16.
PLoS One ; 6(9): e23944, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21915269

RESUMEN

BACKGROUND: Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. RESULTS: To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. CONCLUSIONS: A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Obesidad/genética , Transcriptoma/genética , Células 3T3-L1 , Animales , Biología Computacional , Factores de Crecimiento de Fibroblastos/genética , Glucógeno/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas/genética , Sitios de Carácter Cuantitativo/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Complemento/genética
17.
Obesity (Silver Spring) ; 15(5): 1155-63, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17495191

RESUMEN

OBJECTIVES: In ideopathic obesity, there is evidence that enhanced cortisol regeneration within abdominal subcutaneous adipose tissue may contribute to adiposity and metabolic disease. Whether the cortisol regenerating enzyme, 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1), or glucocorticoid receptor (GRalpha) levels are altered in other adipose depots remains uncertain. Our objective was to determine the association between 11betaHSD1 and GRalpha mRNA levels in four distinct adipose depots and measures of obesity and the metabolic syndrome. RESEARCH METHODS AND PROCEDURES: Adipose tissue biopsies were collected from subcutaneous (abdominal, thigh, gluteal) and intra-abdominal (omental) adipose depots from 21 women. 11betaHSD1 and GRalpha mRNA levels were measured by real-time polymerase chain reaction. Body composition, fat distribution, fat cell size, and blood lipid, glucose, and insulin levels were measured. RESULTS: 11betaHSD1 mRNA was highest in abdominal subcutaneous (p < 0.001) and omental (p < 0.001) depots and was positively correlated with BMI and visceral adiposity in all depots. Omental 11betaHSD1 correlated with percent body fat (R = 0.462, p < 0.05), fat cell size (R = 0.72, p < 0.001), and plasma triglycerides (R = 0.46, p < 0.05). Conversely, GRalpha mRNA was highest in omental fat (p < 0.001). GRalpha mRNA was negatively correlated with BMI in the abdominal subcutaneous (R = -0.589, p < 0.05) and omental depots (R = -0.627, p < 0.05). Omental GRalpha mRNA was inversely associated with visceral adiposity (R = -0.507, p < 0.05), fat cell size (R = -0.52, p < 0.01), and triglycerides (R = -0.50, p < 0.05). DISCUSSION: Obesity was associated with elevated 11betaHSD1 mRNA in all adipose compartments. GRalpha mRNA is reduced in the omental depot with obesity. The novel correlation of 11betaHSD1 with omental fat cell size, independent of obesity, suggests that intracellular cortisol regeneration is a strong predictor of hypertrophy in the omentum.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Tejido Adiposo/citología , HDL-Colesterol/sangre , Obesidad/patología , Epiplón/enzimología , Sobrepeso/fisiología , Tejido Adiposo/patología , Apolipoproteína A-I/sangre , Índice de Masa Corporal , Niño , Sulfato de Deshidroepiandrosterona/sangre , Femenino , Humanos , Insulina/sangre , Lípidos/sangre , Masculino , Obesidad/enzimología , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA