Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35243726

RESUMEN

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Asunto(s)
Artrópodos , Animales , Biodiversidad , Cambio Climático , Ecosistema , Hojas de la Planta
2.
Planta ; 245(1): 77-91, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27580619

RESUMEN

MAIN CONCLUSION: A gene for ß-1,3-glucanase was isolated from carnivorous sundew. It is active in leaves and roots, but not in digestive glands. Analyses in transgenic tobacco suggest its function in germination. Ancestral plant ß-1,3-glucanases (EC 3.2.1.39) played a role in cell division and cell wall remodelling, but divergent evolution has extended their roles in plant defense against stresses to decomposition of prey in carnivorous plants. As available gene sequences from carnivorous plants are rare, we isolated a glucanase gene from roundleaf sundew (Drosera rotundifolia L.) by a genome walking approach. Computational predictions recognized typical gene features and protein motifs described for other plant ß-1,3-glucanases. Phylogenetic reconstructions suggest strong support for evolutionary relatedness to class V ß-1,3-glucanases, including homologs that are active in the traps of related carnivorous species. The gene is expressed in sundew vegetative tissues but not in flowers and digestive glands, and encodes for a functional enzyme when expressed in transgenic tobacco. Detailed analyses of the supposed promoter both in silico and in transgenic tobacco suggest that this glucanase plays a role in development. Specific spatiotemporal activity was observed during transgenic seed germination. Later during growth, the sundew promoter was active in marginal and sub-marginal areas of apical true leaf meristems of young tobacco plants. These results suggest that the isolated glucanase gene is regulated endogenously, possibly by auxin. This is the first report on a nuclear gene study from sundew.


Asunto(s)
Drosera/enzimología , Evolución Molecular , Glucano 1,3-beta-Glucosidasa/genética , Secuencia de Aminoácidos , Simulación por Computador , Drosera/genética , Genes de Plantas , Glucano 1,3-beta-Glucosidasa/química , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucuronidasa/metabolismo , Motivos de Nucleótidos , Filogenia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Alineación de Secuencia , Estrés Fisiológico/genética , Nicotiana/genética , Factores de Transcripción/metabolismo
3.
J Invertebr Pathol ; 140: 46-50, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27546863

RESUMEN

The phylogenetic structure of 109 soil-borne entomopathogenic Beauveria isolates acquired using the Galleria mellonella bait method from different habitat types in Slovakia was determined by sequence analysis of their ITS and Bloc loci. Three Beauveria species were identified; Beauveria bassiana, B. pseudobassiana and B. brongniartii, represented by 51.4%, 43.1% and 5.5% of acquired isolates, respectively, which were resolved into 15, 1 and 1 distinguishable haplotypes. Correlation analysis with the habitat type and individual habitat characteristics showed strong preferences of the most prevalent haplotypes for agricultural (B. bassiana A1) and forest habitats (B. pseudobassiana) which has possible implications for conservative biocontrol strategies.


Asunto(s)
Beauveria/genética , Filogenia , Microbiología del Suelo , Animales , Eslovaquia
4.
Planta ; 238(4): 715-25, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23832529

RESUMEN

Carnivory in plants evolved as an adaptation strategy to nutrient-poor environments. Thanks to specialized traps, carnivorous plants can gain nutrients from various heterotrophic sources such as small insects. Digestion in traps requires a coordinated action of several hydrolytic enzymes that break down complex substances into simple absorbable nutrients. Among these, several pathogenesis-related proteins including ß-1,3-glucanases have previously been identified in digestive fluid of some carnivorous species. Here we show that a single acidic endo-ß-1,3-glucanase of ~50 kDa is present in the digestive fluid of the flypaper-trapped sundew (Drosera rotundifolia L.). The enzyme is inducible with a complex plant ß-glucan laminarin from which it releases simple saccharides when supplied to leaves as a substrate. Moreover, thin-layer chromatography of digestive exudates showed that the simplest degradation products (especially glucose) are taken up by the leaves. These results for the first time point on involvement of ß-1,3-glucanases in digestion of carnivorous plants and demonstrate the uptake of saccharide-based compounds by traps. Such a strategy could enable the plant to utilize other types of nutritional sources e.g., pollen grains, fungal spores or detritus from environment. Possible multiple roles of ß-1,3-glucanases in the digestive fluid of carnivorous sundew are also discussed.


Asunto(s)
Drosera/enzimología , Glucano 1,3-beta-Glucosidasa/metabolismo , Polisacáridos/metabolismo , beta-Glucanos/metabolismo , Animales , Carnivoría , Glucanos , Hidrólisis , Hojas de la Planta/enzimología , Proteolisis
5.
Plants (Basel) ; 11(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35161398

RESUMEN

Diverse communities of bacterial endophytes inhabit plant tissues, and these bacteria play important roles for plant growth and health. Cherry laurel (Prunus laurocerasus L.) is a broadleaf evergreen shrub that is widely grown in temperate zones for its ornamental and medicinal properties, however virtually nothing is known about its associated bacterial community. In this study, we analysed the matured one-year-old leaves of this plant using Illumina-based 16S rRNA gene metabarcoding to reveal the community structure of endophytic bacteria and understand its shifts during the seasonal transition from winter dormancy to a spring vegetative state. The overall community was composed of four dominant phyla (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes). Corynebacterium, Acinetobacter, and Chryseobacterium genera were the most prevalent bacteria, comprising 13.3%, 6.9%, and 6.8% of the amplicon sequence variants (ASVs), respectively. The ASV richness and diversity increased significantly in May as compared to other sampling months (February, March, and April). We observed high variation in the overall community structure of endophytic bacteria among collection dates. The variation was only reflected by a few core community members, suggesting that the changes of the endophytic community during winter/spring seasonal transition are mostly associated with the less abundant community members. We identified biomarker taxa for late winter, mid spring, and late spring collection dates. This study is the first one to report on the diversity and composition of bacterial endophytes in the leaves of cherry laurel and its shifts across the dormancy-to-vegetative seasonal transition.

6.
Ecology ; 103(4): e3639, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35060615

RESUMEN

The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.


Asunto(s)
Artrópodos , Animales , Biodiversidad , Ecosistema , Insectos , Hojas de la Planta , Plantas
7.
Plant Sci ; 303: 110750, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33487339

RESUMEN

Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Receptores de Superficie Celular/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Microscopía Confocal , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Protoplastos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-33029171

RESUMEN

Schisandra chinensis is a woody vine native to China, Korea, and Russia, which has been used as a traditional herbal remedy to treat male infertility. As very little information is available concerning its effects on ejaculated spermatozoa, the aim of this study was to investigate the chemical, antioxidant, and antibacterial properties of the S. chinensis berry (Omija) extract followed by an assessment of its in vitro effects on bovine sperm function and oxidative balance. Phytochemical components of the Omija extract were determined by high performance liquid chromatography. The content of polyphenols, flavonoids, and carotenoids was assessed by spectrophotometric protocols. Antioxidant characteristics of the Omija extract were determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and molybdenum-reducing antioxidant power (MRAP) assays. The disc diffusion method and determination of the minimal inhibitory concentration were applied to study the antibacterial properties of Schisandra. Thirty semen samples were exposed to different concentrations of Omija (1, 5, 10, 25, 50, and 75 µg/mL) for 0, 2, and 24 h. Sperm motility, mitochondrial activity, and superoxide and reactive oxygen species production, as well as total antioxidant capacity and oxidative damage to proteins and lipids were determined. Our data reveal that the Omija extract, particularly at a concentration range within 5-50 µg/mL, exhibited dose-dependent motion-promoting and metabolism-enhancing properties, accompanied by significant antioxidant effects. We may conclude that the biomolecules present in the Omija extract such as schisandrins and phenolic molecules offer protection to critical sperm structures against oxidative insults and/or possible bacterial contamination, leading to a higher preservation of mammalian sperm viability and functional activity.

9.
F1000Res ; 5: 86, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925228

RESUMEN

The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in  abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.

10.
F1000Res ; 4: 1104, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26629335

RESUMEN

The Auxin Binding Protein1 (ABP1) has been identified based on its ability to bind auxin with high affinity and studied for a long time as a prime candidate for the extracellular auxin receptor responsible for mediating in particular the fast non-transcriptional auxin responses. However, the contradiction between the embryo-lethal phenotypes of the originally described Arabidopsis T-DNA insertional knock-out alleles ( abp1-1 and abp1-1s) and the wild type-like phenotypes of other recently described loss-of-function alleles ( abp1-c1 and abp1-TD1) questions the biological importance of ABP1 and relevance of the previous genetic studies. Here we show that there is no hidden copy of the ABP1 gene in the Arabidopsis genome but the embryo-lethal phenotypes of abp1-1 and abp1-1s alleles are very similar to the knock-out phenotypes of the neighboring gene, BELAYA SMERT ( BSM). Furthermore, the allelic complementation test between bsm and abp1 alleles shows that the embryo-lethality in the abp1-1 and abp1-1s alleles is caused by the off-target disruption of the BSM locus by the T-DNA insertions. This clarifies the controversy of different phenotypes among published abp1 knock-out alleles and asks for reflections on the developmental role of ABP1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA