Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Infect Dis ; 24(1): 436, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658874

RESUMEN

BACKGROUND: Studies have shown that Omicron breakthrough infections can occur at higher SARS-CoV-2 antibody levels compared to previous variants. Estimating the magnitude of immunological protection induced from COVID-19 vaccination and previous infection remains important due to varying local pandemic dynamics and types of vaccination programmes, particularly among at-risk populations such as health care workers (HCWs). We analysed a follow-up SARS-CoV-2 serological survey of HCWs at a tertiary COVID-19 referral hospital in Germany following the onset of the Omicron variant. METHODS: The serological survey was conducted in January 2022, one year after previous surveys in 2020 and the availability of COVID-19 boosters including BNT162b2, ChAdOx1-S, and mRNA-1273. HCWs voluntarily provided blood for serology and completed a comprehensive questionnaire. SARS-CoV-2 serological analyses were performed using an Immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA). Antibody levels were reported according to HCW demographic and occupational characteristics, COVID-19 vaccination and SARS-CoV-2 infection history, and multivariate linear regression was used to evaluate these associations. RESULTS: In January 2022 (following the fourth COVID-19 wave in Germany including the onset of the Omicron variant), 1482/1517 (97.7%) HCWs tested SARS-CoV-2 seropositive, compared to 4.6% in December 2020 (second COVID-19 wave). Approximately 80% had received three COVID-19 vaccine doses and 15% reported a previous laboratory-confirmed SARS-CoV-2 infection. SARS-CoV-2 IgG geometric mean titres ranged from 335 (95% Confidence Intervals [CI]: 258-434) among those vaccinated twice and without previous infection to 2204 (95% CI: 1919-2531) among those vaccinated three times and with previous infection. Heterologous COVID-19 vaccination combinations including a mRNA-1273 booster were significantly associated with the highest IgG antibody levels compared to other schemes. There was an 8-to 10-fold increase in IgG antibody levels among 31 HCWs who reported a SARS-CoV-2 infection in May 2020 to January 2022 after COVID-19 booster vaccination. CONCLUSIONS: Our findings demonstrate the importance of ongoing COVID-19 booster vaccination strategies in the context of variants such as Omicron and despite hybrid immunity from previous SARS-CoV-2 infections, particularly for at-risk populations such as HCWs. Where feasible, effective types of booster vaccination, such as mRNA vaccines, and the appropriate timing of administration should be carefully considered.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Personal de Salud , Inmunización Secundaria , Inmunoglobulina G , SARS-CoV-2 , Humanos , Personal de Salud/estadística & datos numéricos , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/epidemiología , Masculino , Femenino , Anticuerpos Antivirales/sangre , Adulto , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Persona de Mediana Edad , Alemania/epidemiología , Inmunoglobulina G/sangre , Estudios de Seguimiento , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , ChAdOx1 nCoV-19/inmunología , ChAdOx1 nCoV-19/administración & dosificación , Vacunación/estadística & datos numéricos , Estudios de Cohortes
2.
BMC Infect Dis ; 24(1): 1153, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39396951

RESUMEN

INTRODUCTION: During the mpox outbreak in 2022, the highest number of cases in Germany were registered in Berlin, almost all of them in men who have sex with men (MSM). However, the frequency of clinically undiagnosed infections is unknown. METHODS: A cross-sectional study was conducted among MSM in Berlin, Germany. Participants were recruited from private practices and community-based checkpoints specialised in HIV and STI care for MSM. They were asked to complete an online questionnaire on socio-demographic data, mpox diagnosis, vaccination history and sexual behaviour, and to provide a blood sample for serological analysis. The samples were tested for antibodies against a range of antigens to distinguish between antibodies induced by mpox infection and MVA vaccination, with pre-immune sera from childhood smallpox vaccination as a confounding factor. Associations of behavioural variables with reported and suspected mpox diagnosis as the outcome were tested using univariable and multivariable logistic regression models. RESULTS: Between the 11th April and 1st July 2023, 1,119 participants were recruited in eight private practices and two community-based checkpoints in Berlin. All participants provided a blood sample for serological testing. Information for the online questionnaire was provided by 728 participants; core data on age and mpox history for participants who did not provide questionnaire data were provided by the practices for an additional 218 participants. A previous diagnosis of mpox was reported for/by 70 participants (7.4%). Using a conservative and strict case definition, we serologically identified an additional 91 individuals with suspected undiagnosed mpox infection. Individuals with reported or suspected mpox infections reported more condomless anal sex partners in the past 3 months (OR = 5.93; 95% CI 2.10-18.35 for 5-10 partners; OR = 9.53; 95% CI 2.72-37.54 for > 10 partners) and were more likely to report sexual contact with partners diagnosed with mpox (OR = 2.87; 95% CI 1.39-5.84). CONCLUSION: A substantial proportion of mpox infections were clinically undiagnosed. The number of condomless anal sex partners was strongly associated with both confirmed and suspected undiagnosed mpox infection. Therefore, mpox control measures based on clinical diagnosis of mpox are likely to have limited effectiveness in preventing mpox transmission in outbreak situations because many infections remain unrecognised and undiagnosed.


Asunto(s)
Homosexualidad Masculina , Humanos , Masculino , Adulto , Homosexualidad Masculina/estadística & datos numéricos , Estudios Transversales , Estudios Seroepidemiológicos , Berlin/epidemiología , Adulto Joven , Persona de Mediana Edad , Conducta Sexual/estadística & datos numéricos , Encuestas y Cuestionarios , Alemania/epidemiología , Adolescente , Enfermedades no Diagnosticadas/epidemiología , Anticuerpos Antivirales/sangre
3.
J Med Virol ; 95(12): e29261, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38054557

RESUMEN

The monkeypox virus (MPXV) outbreak in 2022 has renewed interest in the detection of antibodies against orthopox viruses (OPXV) and MPXV, as serological methods can aid diagnostics and are key to epidemiological studies. Here three complementary serological methods are described with different strengths to aid the development and evaluation of in-house assays: An immunofluorescence assay (IFA) for specific detection of IgG and IgM, an enzyme-linked immunosorbent assay for higher sample throughput to aid epidemiological studies and a neutralization test to detect virus neutralizing antibodies. As implementation of MPXV-specific diagnostics is often hampered by the requirement for a dedicated biosafety level 3 laboratory (BSL-3), the focus of this study is on biosafety aspects to facilitate safe testing also under BSL-2 conditions. To this aim, it was analyzed whether OPXV, which can be handled under BSL-2 conditions, could be used as less virulent alternatives to MPXV. Furthermore, an inactivation method was established to remove up to five log-steps of infectious virus particles from viraemic sera without compromising antibody detection. The results show that immunological cross-reactivity between OPXV provides an opportunity for the interchangeable usage of different OPXV species in serological assays, enabling MPXV serology outside of BSL-3 facilities.


Asunto(s)
Contención de Riesgos Biológicos , Monkeypox virus , Humanos , Laboratorios , Anticuerpos Antivirales , Pruebas de Neutralización
4.
Virol J ; 20(1): 21, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747188

RESUMEN

BACKGROUND: SARS-CoV-2 replicates efficiently in the upper airways of humans and produces high loads of virus RNA and, at least in the initial phase after infection, many infectious virus particles. Studying virus ultrastructure, such as particle integrity or presence of spike proteins, and effects on their host cells in patient samples is important to understand the pathogenicity of SARS-CoV-2. METHODS: Suspensions from swab samples with a high load of virus RNA (Ct < 20) were sedimented by desktop ultracentrifugation and prepared for thin section electron microscopy using a novel method which is described in detail. Embedding was performed in Epon or in LR White resin using standard or rapid protocols. Thin sections were examined using transmission electron microscopy. RESULTS: Virus particles could be regularly detected in the extracellular space, embedded in a background of heterogenous material (e.g. vesicles and needle-like crystals), and within ciliated cells. Morphology (i.e. shape, size, spike density) of virus particles in the swab samples was very similar to particle morphology in cell culture. However, in some of the samples the virus particles hardly revealed spikes. Infected ciliated cells occasionally showed replication organelles, such as double-membrane vesicles. The most common cells in all samples were keratinocytes from the mucosa and bacteria. CONCLUSIONS: The new method allows the ultrastructural visualization and analysis of coronavirus particles and of infected host cells from easy to collect naso/oropharyngeal patient swab samples.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Manejo de Especímenes/métodos , Microscopía Electrónica de Transmisión , ARN
5.
Virol J ; 20(1): 139, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37408040

RESUMEN

BACKGROUND: Over the course of the COVID-19 pandemic, laboratories worldwide have been facing an unprecedented increase in demand for PCR testing because of the high importance of diagnostics for prevention and control of virus spread. Moreover, testing demand has been varying considerably over time, depending on the epidemiological situation, rendering efficient resource allocation difficult. Here, we present a scalable workflow which we implemented in our laboratory to increase PCR testing capacity while maintaining high flexibility regarding the number of samples to be processed. METHODS: We compared the performance of five automated extraction instruments, using dilutions of SARS-CoV-2 cell culture supernatant as well as clinical samples. To increase PCR throughput, we combined the two duplex PCR reactions of our previously published SARS-CoV-2 PCR assay into one quadruplex reaction and compared their limit of detection as well as their performance on the detection of low viral loads in clinical samples. Furthermore, we developed a sample pooling protocol with either two or four samples per pool, combined with a specifically adapted SARS-CoV-2 quadruplex PCR assay, and compared the diagnostic sensitivity of pooled testing and individual testing. RESULTS: All tested automated extraction instruments yielded comparable results regarding the subsequent sensitivity of SARS-CoV-2 detection by PCR. While the limit of detection of the quadruplex SARS-CoV-2 PCR assay (E-Gene assay: 28.7 genome equivalents (ge)/reaction, orf1ab assay: 32.0 ge/reaction) was slightly higher than that of our previously published duplex PCR assays (E-Gene assay: 9.8 ge/reaction, orf1ab assay: 6.6 ge/reaction), the rate of correctly identified positive patient samples was comparable for both assays. Sample pooling with optimized downstream quadruplex PCR showed no loss in diagnostic sensitivity compared to individual testing. CONCLUSION: Specific adaptation of PCR assays can help overcome the potential loss of sensitivity due to higher levels of PCR multiplexing or sample dilution in pooled testing. Combining these adapted PCR assays with different sample processing strategies provides a simple and highly adjustable workflow for resource-efficient SARS-CoV-2 diagnostics. The presented principles can easily be adopted in a variety of laboratory settings as well as be adapted to pathogens other than SARS-CoV-2, making it feasible for any laboratory that conducts PCR diagnostics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Pandemias , Prueba de COVID-19 , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
6.
Infection ; 51(4): 1093-1102, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36913112

RESUMEN

PURPOSE: COViK, a prospective hospital-based multicenter case-control study in Germany, aims to assess the effectiveness of COVID-19 vaccines against severe disease. Here, we report vaccine effectiveness (VE) against COVID-19-caused hospitalization and intensive care treatment during the Omicron wave. METHODS: We analyzed data from 276 cases with COVID-19 and 494 control patients recruited in 13 hospitals from 1 December 2021 to 5 September 2022. We calculated crude and confounder-adjusted VE estimates. RESULTS: 21% of cases (57/276) were not vaccinated, compared to 5% of controls (26/494; p < 0.001). Confounder-adjusted VE against COVID-19-caused hospitalization was 55.4% (95% CI: 12-78%), 81.5% (95% CI: 68-90%) and 95.6% (95%CI: 88-99%) after two, three and four vaccine doses, respectively. VE against hospitalization due to COVID-19 remained stable up to one year after three vaccine doses. CONCLUSION: Three vaccine doses remained highly effective in preventing severe disease and this protection was sustained; a fourth dose further increased protection.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios de Casos y Controles , Estudios Prospectivos , Eficacia de las Vacunas , Alemania/epidemiología
7.
Virus Genes ; 59(4): 532-540, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37256469

RESUMEN

Poxviruses are known to evolve slower than RNA viruses with only 1-2 mutations/genome/year. Rather than single mutations, rearrangements such as gene gain and loss, which have been discussed as a possible driver for host adaption, were described in poxviruses. In 2022 and 2023 the world is being challenged by the largest global outbreak so far of Mpox virus, and the virus seems to have established itself in the human community for an extended period of time. Here, we report five Mpox virus genomes from Germany with extensive gene duplication and loss, leading to the expansion of the ITR regions from 6400 to up to 24,600 bp. We describe duplications of up to 18,200 bp to the opposed genome end, and deletions at the site of insertion of up to 16,900 bp. Deletions and duplications of genes with functions of supposed immune modulation, virulence and host adaption as B19R, B21R, B22R and D10L are described. In summary, we highlight the need for monitoring rearrangements of the Mpox virus genome rather than for monitoring single mutations only.


Asunto(s)
Mpox , Poxviridae , Humanos , Duplicación de Gen , Mpox/genética , Genoma Viral/genética , Poxviridae/genética , Mutación
8.
Euro Surveill ; 28(16)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37078884

RESUMEN

BackgroundThere are conflicting reports on the performance of rapid antigen detection tests (RDT) in the detection of the SARS-CoV-2 Omicron (B.1.1.529) variant; however, these tests continue to be used frequently to detect potentially contagious individuals with high viral loads.AimThe aim of this study was to investigate comparative detection of the Delta (B.1.617.2) and Omicron variants by using a selection of 20 RDT and a limited panel of pooled combined oro- and nasopharyngeal clinical Delta and Omicron specimens.MethodsWe tested 20 CE-marked RDT for their performance to detect SARS-CoV-2 Delta and Omicron by using a panel of pooled clinical specimens collected in January 2022 in Berlin, Germany.ResultsWe observed equivalent detection performance for Delta and Omicron for most RDT, and sensitivity was widely in line with our previous pre-Delta/Omicron evaluation. Some variation for individual RDT was observed either for Delta vs Omicron detection, or when compared with the previous evaluation, which may be explained both by different panel sizes resulting in different data robustness and potential limitation of batch-to-batch consistency. Additional experiments with three RDT using non-pooled routine clinical samples confirmed comparable performance to detect Delta vs Omicron. Overall, RDT that were previously positively evaluated retained good performance also for Delta and Omicron variants.ConclusionOur findings suggest that currently available RDT are sufficient for the detection of SARS-CoV-2 Delta and Omicron variants.


Asunto(s)
Prueba Serológica para COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Berlin , COVID-19/diagnóstico , Alemania , SARS-CoV-2/genética , Prueba Serológica para COVID-19/métodos
9.
BMC Infect Dis ; 22(1): 80, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073863

RESUMEN

BACKGROUND: SARS-CoV-2 cases in Germany increased in early March 2020. By April 2020, cases among health care workers (HCW) were detected across departments at a tertiary care hospital in Berlin, prompting a longitudinal investigation to assess HCW SARS-CoV-2 serostatus with an improved testing strategy and associated risk factors. METHODS: In May/June and December 2020, HCWs voluntarily provided blood for serology and nasopharyngeal/oropharyngeal (NP/OP) samples for real-time polymerase chain reaction (PCR) and completed a questionnaire. A four-tiered SARS-CoV-2 serological testing strategy including two different enzyme-linked immunosorbent assays (ELISA) and biological neutralization test (NT) was used. ELISA-NT correlation was assessed using Pearson's correlation coefficient. Sociodemographic and occupational factors associated with seropositivity were assessed with multivariate logistic regression. RESULTS: In May/June, 18/1477 (1.2%) HCWs were SARS-CoV-2 seropositive, followed by 56/1223 (4.6%) in December. Among those tested in both, all seropositive in May/June remained seropositive by ELISA and positive by NT after 6 months. ELISA ratios correlated well with NT titres in May/June (R = 0.79) but less so in December (R = 0.41). Those seropositive reporting a past SARS-CoV-2 positive PCR result increased from 44.4% in May/June to 85.7% in December. HCWs with higher occupational risk (based on profession and working site), nurses, males, and those self-reporting COVID-19-like symptoms had significantly higher odds of seropositivity. CONCLUSIONS: This investigation provides insight into the burden of HCW infection in this local outbreak context and the antibody dynamics over time with an improved robust testing strategy. It also highlights the continued need for effective infection control measures particularly among HCWs with higher occupational risk.


Asunto(s)
COVID-19 , SARS-CoV-2 , Alemania/epidemiología , Personal de Salud , Humanos , Masculino , Centros de Atención Terciaria
10.
Nature ; 530(7589): 228-232, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26840485

RESUMEN

The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.


Asunto(s)
Ebolavirus/genética , Monitoreo Epidemiológico , Genoma Viral/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos , Aeronaves , Brotes de Enfermedades/estadística & datos numéricos , Ebolavirus/clasificación , Ebolavirus/patogenicidad , Guinea/epidemiología , Humanos , Mutagénesis/genética , Tasa de Mutación , Factores de Tiempo
11.
Nature ; 533(7601): 100-4, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27147028

RESUMEN

Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/fisiopatología , Linfocitos T/inmunología , Antígeno CTLA-4/metabolismo , Femenino , Citometría de Flujo , Guinea/epidemiología , Fiebre Hemorrágica Ebola/mortalidad , Humanos , Mediadores de Inflamación/inmunología , Estudios Longitudinales , Activación de Linfocitos , Masculino , Alta del Paciente , Receptor de Muerte Celular Programada 1/metabolismo , Sobrevivientes , Linfocitos T/metabolismo , Carga Viral
12.
Euro Surveill ; 27(45)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367010

RESUMEN

Before the international spread of monkeypox in May 2022, PCR kits for the detection of orthopoxviruses, and specifically monkeypox virus, were rarely available. Here we describe the evaluation of 11 recently developed commercially available PCR kits for the detection of monkeypox virus DNA. All tested kits are currently intended for research use only and clinical performance still needs to be assessed in more detail, but all were suitable for diagnostics of monkeypox virus, with variations in specificity rather than sensitivity.


Asunto(s)
Mpox , Humanos , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética , Berlin , ADN Viral/genética , ADN Viral/análisis , Reacción en Cadena de la Polimerasa
13.
Emerg Infect Dis ; 27(8): 2174-2178, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34102097

RESUMEN

We detected delayed and reduced antibody and T-cell responses after BNT162b2 vaccination in 71 elderly persons (median age 81 years) compared with 123 healthcare workers (median age 34 years) in Germany. These data emphasize that nonpharmaceutical interventions for coronavirus disease remain crucial and that additional immunizations for the elderly might become necessary.


Asunto(s)
COVID-19 , Adulto , Anciano , Anciano de 80 o más Años , Vacuna BNT162 , Vacunas contra la COVID-19 , Alemania/epidemiología , Humanos , SARS-CoV-2 , Linfocitos T , Vacunación
14.
Virol J ; 18(1): 110, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078394

RESUMEN

BACKGROUND: The reliable detection of SARS-CoV-2 has become one of the most important contributions to COVID-19 crisis management. With the publication of the first sequences of SARS-CoV-2, several diagnostic PCR assays have been developed and published. In addition to in-house assays the market was flooded with numerous commercially available ready-to-use PCR kits, with both approaches showing alarming shortages in reagent supply. AIM: Here we present a resource-efficient in-house protocol for the PCR detection of SARS-CoV-2 RNA in patient specimens (RKI/ZBS1 SARS-CoV-2 protocol). METHODS: Two duplex one-step real-time RT-PCR assays are run simultaneously and provide information on two different SARS-CoV-2 genomic regions. Each one is duplexed with a control that either indicates potential PCR inhibition or proves the successful extraction of nucleic acid from the clinical specimen. RESULTS: Limit of RNA detection for both SARS-CoV-2 assays is below 10 genomes per reaction. The protocol enables testing specimens in duplicate across the two different SARS-CoV-2 PCR assays, saving reagents by increasing testing capacity. The protocol can be run on various PCR cyclers with several PCR master mix kits. CONCLUSION: The presented RKI/ZBS1 SARS-CoV-2 protocol represents a cost-effective alternative in times of shortages when commercially available ready-to-use kits may not be available or affordable.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , Proteínas de la Envoltura de Coronavirus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Límite de Detección , Poliproteínas/genética , ARN Viral/genética , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Proteínas Virales/genética
15.
Mol Cell Probes ; 58: 101742, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33971264

RESUMEN

Point of care detection of SARS-CoV-2 is one pillar in a containment strategy and important to break infection chains. Here we report the sensitive, specific and robust detection of SARS-CoV-2 and respective variants of concern by the ID NOW COVID-19 device.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Sistemas de Atención de Punto , SARS-CoV-2/genética , COVID-19/virología , Técnicas de Laboratorio Clínico/métodos , Humanos , Reproducibilidad de los Resultados , SARS-CoV-2/fisiología , Sensibilidad y Especificidad
16.
Euro Surveill ; 26(44)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34738516

RESUMEN

IntroductionThe detection of SARS-CoV-2 with rapid diagnostic tests (RDT) has become an important tool to identify infected people and break infection chains. These RDT are usually based on antigen detection in a lateral flow approach.AimWe aimed to establish a comprehensive specimen panel for the decentralised technical evaluation of SARS-CoV-2 antigen rapid diagnostic tests.MethodsWhile for PCR diagnostics the validation of a PCR assay is well established, there is no common validation strategy for antigen tests, including RDT. In this proof-of-principle study we present the establishment of a panel of 50 pooled clinical specimens that cover a SARS-CoV-2 concentration range from 1.1 × 109 to 420 genome copies per mL of specimen. The panel was used to evaluate 31 RDT in up to six laboratories.ResultsOur results show that there is considerable variation in the detection limits and the clinical sensitivity of different RDT. We show that the best RDT can be applied to reliably identify infectious individuals who present with SARS-CoV-2 loads down to 106 genome copies per mL of specimen. For the identification of infected individuals with SARS-CoV-2 loads corresponding to less than 106 genome copies per mL, only three RDT showed a clinical sensitivity of more than 60%.ConclusionsSensitive RDT can be applied to identify infectious individuals with high viral loads but not to identify all infected individuals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antígenos Virales , Pruebas Diagnósticas de Rutina , Humanos , Sensibilidad y Especificidad , Pruebas Serológicas
17.
Artículo en Alemán | MEDLINE | ID: mdl-33760935

RESUMEN

As part of the national influenza pandemic preparedness, surveillance systems have been established in Germany in addition to the mandatory notifications according to the Protection Against Infection Act. The aim of these systems is the description, analysis, and evaluation of the epidemiology of acute respiratory infections (ARIs), the identification of the circulating viruses, and the trend. Since the beginning of the COVID-19 pandemic, the systems have been expanded to enable monitoring of infections with SARS-CoV­2.Three systems are presented: GrippeWeb, the primary care sentinel Arbeitsgemeinschaft Influenza with its electronic reporting module SEEDARE, and the ICD-10-based hospital sentinel ICOSARI. With these systems, ARIs can be monitored at the population, outpatient, and inpatient levels. In combination with the monitoring of mortality, these systems provide important information on the frequency of different stages of disease severity in the population. In order to expand the systems to SARS-CoV­2, only a few adjustments were needed.As the case definitions for ARIs were preserved, historical baselines of the systems can still be used for comparison. All systems are structured in such a way that stable and established reference values are available for calculating weekly proportions and rates.This is an important addition to the mandatory reporting system of infectious diseases in Germany, which depends on the particular testing strategy, the number of tests performed, and on specific case definitions, which are adapted as required.The surveillance systems have proven to be feasible and efficient in the COVID-19 pandemic, even when compared internationally.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Alemania/epidemiología , Humanos , Pandemias/prevención & control , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología , SARS-CoV-2
18.
Euro Surveill ; 25(47)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33243353

RESUMEN

Three months after a coronavirus disease (COVID-19) outbreak in Kupferzell, Germany, a population-based study (n = 2,203) found no RT-PCR-positives. IgG-ELISA seropositivity with positive virus neutralisation tests was 7.7% (95% confidence interval (CI): 6.5-9.1) and 4.3% with negative neutralisation tests. We estimate 12.0% (95% CI: 10.4-14.0%) infected adults (24.5% asymptomatic), six times more than notified. Full hotspot containment confirms the effectiveness of prompt protection measures. However, 88% naïve adults are still at high COVID-19 risk.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19 , Infecciones por Coronavirus/diagnóstico , Coronavirus/genética , Coronavirus/aislamiento & purificación , Neumonía Viral/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Adolescente , Adulto , Anciano , COVID-19 , Infecciones por Coronavirus/epidemiología , Brotes de Enfermedades/prevención & control , Ensayo de Inmunoadsorción Enzimática , Femenino , Alemania/epidemiología , Humanos , Inmunoglobulina G , Incidencia , Masculino , Persona de Mediana Edad , Pandemias/prevención & control , Neumonía Viral/epidemiología , Vigilancia de la Población , SARS-CoV-2 , Estudios Seroepidemiológicos , Pruebas Serológicas
19.
J Infect Dis ; 220(2): 195-202, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30788508

RESUMEN

BACKGROUND: In 2015, the laboratory at the Ebola treatment center in Coyah, Guinea, confirmed Ebola virus disease (EVD) in 286 patients. The cycle threshold (Ct) of an Ebola virus-specific reverse transcription-polymerase chain reaction assay and 13 blood chemistry parameters were measured on admission and during hospitalization. Favipiravir treatment was offered to patients with EVD on a compassionate-use basis. METHODS: To reduce biases in the raw field data, we carefully selected 163 of 286 patients with EVD for a retrospective study to assess associations between potential risk factors, alterations in blood chemistry findings, favipiravir treatment, and outcome. RESULTS: The case-fatality rate in favipiravir-treated patients was lower than in untreated patients (42.5% [31 of 73] vs 57.8% [52 of 90]; P = .053 by univariate analysis). In multivariate regression analysis, a higher Ct and a younger age were associated with survival (P < .001), while favipiravir treatment showed no statistically significant effect (P = .11). However, Kaplan-Meier analysis indicated a longer survival time in the favipiravir-treated group (P = .015). The study also showed characteristic changes in blood chemistry findings in patients who died, compared with survivors. CONCLUSIONS: Consistent with the JIKI trial, this retrospective study revealed a trend toward improved survival in favipiravir- treated patients; however, the effect of treatment was not statistically significant, except for its influence on survival time.


Asunto(s)
Amidas/uso terapéutico , Antivirales/uso terapéutico , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Pirazinas/uso terapéutico , Adolescente , Adulto , Niño , Preescolar , Ensayos de Uso Compasivo/métodos , Femenino , Guinea , Fiebre Hemorrágica Ebola/virología , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Carga Viral/efectos de los fármacos , Adulto Joven
20.
Anal Bioanal Chem ; 406(29): 7611-21, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25311190

RESUMEN

Fast and reliable diagnostic assays are required for a resilient detection of clinical infections or biothreat-relevant pathogens. While PCR has proven to be the gold standard for nucleic acid detection, the identification of pathogen particles is still challenging and depends on the availability of well-characterized, chemically stable, and selective recognition molecules. Here, we report the screening of a phage display random peptide library for vaccinia virus-binding peptides. The identified peptide was extensively characterized using peptide-probe ELISA, surface plasmon resonance, nLC-MS/MS, Western Blot, peptide-based immunofluorescence assay, and electron microscopy. Following identification, the phage-free, synthetic peptide, designated αVACVpep05, was shown to bind to vaccinia virus and other orthopoxviruses. We can demonstrate that the highly conserved orthopoxvirus surface protein D8 is the interaction partner of αVACVpep05, thus enabling the peptide to bind to other orthopoxviruses, including cowpox virus and monkeypox virus, viruses that cause clinically relevant zoonotic infections in humans. The process of phage display-mediated peptide identification has been optimized intensively, and we provide recommendations for the identification of peptides suitable for the detection of further pathogens. The peptide described here was critically characterized and seems to be a promising reagent for the development of diagnostic platforms for orthopoxviruses. We believe that our results will help to promote the development of alternative, nonantibody-based synthetic detection molecules for further pathogens.


Asunto(s)
Orthopoxvirus/aislamiento & purificación , Orthopoxvirus/metabolismo , Biblioteca de Péptidos , Péptidos/química , Péptidos/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA