Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 206(6): 245, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702537

RESUMEN

Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the ß-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.


Asunto(s)
Fermentación , Melaza , Rhodotorula , Saccharum , beta Caroteno , Rhodotorula/metabolismo , Rhodotorula/genética , Rhodotorula/crecimiento & desarrollo , Rhodotorula/aislamiento & purificación , Rhodotorula/clasificación , Saccharum/metabolismo , beta Caroteno/metabolismo , beta Caroteno/biosíntesis , Carotenoides/metabolismo , Antioxidantes/metabolismo , Biomasa , Medios de Cultivo/química , Filogenia
2.
Artículo en Inglés | MEDLINE | ID: mdl-39090227

RESUMEN

The present study aims to analyze the interaction between Rhodotorula toruloides and magnetic nanoparticles and evaluate their effect on carotenoid production. The manganese ferrite nanoparticles were synthesized without chitosan (MnFe2O4) and chitosan coating (MnFe2O4-CS) by the co-precipitation method assisted by hydrothermal treatment. XRD (X-ray diffraction), Magnetometry, Dynamic Light Scattering (DLS) and FTIR (Fourier-Transform Infrared Spectroscopy), are used to characterize the magnetic nanoparticles. The crystallite size of MnFe2O4 was 16 nm for MnFe2O4 and 20 nm for MnFe2O4-CS. The magnetic saturation of MnFe2O4-CS was lower (39.6 ± 0.6 emu/g) than the same MnFe2O4 nanoparticles (42.7 ± 0.3 emu/g), which was attributed to the chitosan fraction presence. The MnFe2O4-CS FTIR spectra revealed the presence of the characteristic chitosan bands. DLS demonstrated that the average hydrodynamic diameters were 344 nm for MnFe2O4 and 167 nm for MnFe2O4-CS. A kinetic study of cell immobilization performed with their precipitation with a magnet demonstrated that interaction between magnetic nanoparticles and R. toruloides was characterized by an equilibrium time of 2 h. The adsorption isotherm models (Langmuir and Freundlich) were fitted to the experimental values. The trypan blue assay was used for cell viability assessment. The carotenoid production increased to 256.2 ± 6.1 µg/g dry mass at 2.0 mg/mL MnFe2O4-CS. The use of MnFe2O4-CS to stimulate carotenoid yeast production and the magnetic separation of biomass are promising nanobiotechnological alternatives. Magnetic cell immobilization is a perspective technique for obtaining cell metabolites.

3.
Biotechnol Rep (Amst) ; 17: 49-54, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29379768

RESUMEN

In this study, an extracellular phytase produced by Aspergillus niger 7A-1, was biochemically characterized for possible industrial application. The enzyme was purified from a crude extract obtained by solid-state fermentation (SSF) of triticale waste. The extract was obtained by microfiltration, ultrafiltration (300, 100 and 30 kDa) and DEAE-Sepharose column chromatography. The molecular weight of the purified enzyme was estimated to be 89 kDa by SDS-PAGE. The purified enzyme was most active at pH 5.3 and 56 °C, and retained 50% activity over a wide pH range of 4 to 7. The enzymatic thermostability assay showed that the enzyme retained more than 70% activity at 80 °C for 60 s, 40% activity for 120 s and 9% after 300 s. The phytase showed broad substrate specificity, a Km value of 220 µM and Vmax of 25 µM/min. The purified phytase retained 50% of its activity with phosphorylated compounds such as phenyl phosphate, 1-Naphthyl phosphate, 2-Naphthyl phosphate, p-Nitrophenyl phosphate and Glycerol-2-phosphate. The inhibition of phytase activity by metal ions was observed to be drastically inhibited (50%) by Ca++ and was slightly inhibited (10%) by Ni++, K+, and Na+, at 10 and 20 mM concentrations. A positive effect was obtained with Mg++, Mn++, Cu++, Cd++ and Ba++ at 25 and 35% with stimulatory effect on the phytase activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA