Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 154(5): 1465-1479.e13, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29305935

RESUMEN

BACKGROUND & AIMS: Cirrhosis results from accumulation of myofibroblasts derived from quiescent hepatic stellate cells (Q-HSCs); it regresses when myofibroblastic HSCs are depleted. Hedgehog signaling promotes transdifferentiation of HSCs by activating Yes-associated protein 1 (YAP1 or YAP) and inducing aerobic glycolysis. However, increased aerobic glycolysis alone cannot meet the high metabolic demands of myofibroblastic HSCs. Determining the metabolic processes of these cells could lead to strategies to prevent progressive liver fibrosis, so we investigated whether glutaminolysis (conversion of glutamine to alpha-ketoglutarate) sustains energy metabolism and permits anabolism when Q-HSCs become myofibroblastic, and whether this is controlled by hedgehog signaling to YAP. METHODS: Primary HSCs were isolated from C57BL/6 or Smoflox/flox mice; we also performed studies with rat and human myofibroblastic HSCs. We measured changes of glutaminolytic genes during culture-induced primary HSC transdifferentiation. Glutaminolysis was disrupted in cells by glutamine deprivation or pathway inhibitors (bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide, CB-839, epigallocatechin gallate, and aminooxyacetic acid), and effects on mitochondrial respiration, cell growth and migration, and fibrogenesis were measured. Hedgehog signaling to YAP was disrupted in cells by adenovirus expression of Cre-recombinase or by small hairpin RNA knockdown of YAP. Hedgehog and YAP activity were inhibited by incubation of cells with cyclopamine or verteporfin, and effects on glutaminolysis were measured. Acute and chronic liver fibrosis were induced in mice by intraperitoneal injection of CCl4 or methionine choline-deficient diet. Some mice were then given injections of bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide to inhibit glutaminolysis, and myofibroblast accumulation was measured. We also performed messenger RNA and immunohistochemical analyses of percutaneous liver biopsies from healthy human and 4 patients with no fibrosis, 6 patients with mild fibrosis, and 3 patients with severe fibrosis. RESULTS: Expression of genes that regulate glutaminolysis increased during transdifferentiation of primary Q-HSCs into myofibroblastic HSCs, and inhibition of glutaminolysis disrupted transdifferentiation. Blocking glutaminolysis in myofibroblastic HSCs suppressed mitochondrial respiration, cell growth and migration, and fibrogenesis; replenishing glutaminolysis metabolites to these cells restored these activities. Knockout of the hedgehog signaling intermediate smoothened or knockdown of YAP inhibited expression of glutaminase, the rate-limiting enzyme in glutaminolysis. Hedgehog and YAP inhibitors blocked glutaminolysis and suppressed myofibroblastic activities in HSCs. In livers of patients and of mice with acute or chronic fibrosis, glutaminolysis was induced in myofibroblastic HSCs. In mice with liver fibrosis, inhibition of glutaminase blocked accumulation of myofibroblasts and fibrosis progression. CONCLUSIONS: Glutaminolysis controls accumulation of myofibroblast HSCs in mice and might be a therapeutic target for cirrhosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Metabolismo Energético , Glutamina/metabolismo , Proteínas Hedgehog/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Estudios de Casos y Controles , Proteínas de Ciclo Celular , Proliferación Celular , Transdiferenciación Celular , Células Cultivadas , Reprogramación Celular , Regulación de la Expresión Génica , Glutaminasa/metabolismo , Proteínas Hedgehog/genética , Células Estrelladas Hepáticas/patología , Humanos , Ácidos Cetoglutáricos/metabolismo , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Miofibroblastos/patología , Fenotipo , Fosfoproteínas/genética , Interferencia de ARN , Ratas , Transducción de Señal , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Factores de Tiempo , Factores de Transcripción , Transfección , Proteínas Señalizadoras YAP
2.
J Proteome Res ; 16(6): 2294-2306, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28452488

RESUMEN

The transplantation of human pancreatic islets is a therapeutic possibility for a subset of type 1 diabetic patients who experience severe hypoglycemia. Pre- and post-transplantation loss in islet viability and function, however, is a major efficacy-limiting impediment. To investigate the effects of inflammation and hypoxia, the main obstacles hampering the survival and function of isolated, cultured, and transplanted islets, we conducted a comprehensive metabolomics evaluation of human islets in parallel with dynamic glucose-stimulated insulin release (GSIR) perifusion studies for functional evaluation. Metabolomics profiling of media and cell samples identified a total of 241 and 361 biochemicals, respectively. Metabolites that were altered in highly significant manner in both included, for example, kynurenine, kynurenate, citrulline, and mannitol/sorbitol under inflammation (all elevated) plus lactate (elevated) and N-formylmethionine (depressed) for hypoxia. Dynamic GSIR experiments, which capture both first- and second-phase insulin release, found severely depressed insulin-secretion under hypoxia, whereas elevated baseline and stimulated insulin-secretion was measured for islet exposed to the inflammatory cytokine cocktail (IL-1ß, IFN-γ, and TNF-α). Because of the uniquely large changes observed in kynurenine and kynurenate, they might serve as potential biomarkers of islet inflammation, and indoleamine-2,3-dioxygenase on the corresponding pathway could be a worthwhile therapeutic target to dampen inflammatory effects.


Asunto(s)
Hiperglucemia , Hipoxia , Inflamación , Islotes Pancreáticos/metabolismo , Metabolómica/métodos , Biomarcadores/análisis , Humanos , Inflamación/diagnóstico , Insulina/metabolismo , Secreción de Insulina , Trasplante de Islotes Pancreáticos , Ácido Quinurénico/análisis , Quinurenina/análisis
3.
BMC Cell Biol ; 18(1): 20, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28427343

RESUMEN

BACKGROUND: Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. RESULTS: We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. CONCLUSIONS: Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.


Asunto(s)
Células Estrelladas Hepáticas/fisiología , Leptina/genética , Obesidad/fisiopatología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo/citología , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteínas Hedgehog/fisiología , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Leptina/deficiencia , Leptina/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Obesos , Miofibroblastos/citología , Miofibroblastos/metabolismo , Obesidad/genética , Comunicación Paracrina/genética , Receptores de Leptina/metabolismo , Receptor Smoothened/agonistas
4.
Hepatology ; 64(1): 232-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26970079

RESUMEN

UNLABELLED: Adult liver regeneration requires induction and suppression of proliferative activity in multiple types of liver cells. The mechanisms that orchestrate the global changes in gene expression that are required for proliferative activity to change within individual liver cells, and that coordinate proliferative activity among different types of liver cells, are not well understood. Morphogenic signaling pathways that are active during fetal development, including Hedgehog and Hippo/Yes-associated protein 1 (Yap1), regulate liver regeneration in adulthood. Cirrhosis and liver cancer result when these pathways become dysregulated, but relatively little is known about the mechanisms that coordinate and control morphogenic signaling during effective liver regeneration. We evaluated the hypothesis that the Hedgehog pathway controls Yap1 activation during liver regeneration by studying intact mice and cultured liver cells. In cultured hepatic stellate cells (HSCs), disrupting Hedgehog signaling blocked activation of Yap1, and knocking down Yap1 inhibited induction of both Yap1- and Hedgehog-regulated genes that enable HSC to become myofibroblasts (MFs). In mice, disrupting Hedgehog signaling in MFs inhibited liver regeneration after partial hepactectomy (PH). Reduced proliferative activity in the liver epithelial compartment resulted from loss of stroma-derived paracrine signals that activate Yap1 and the Hedgehog pathway in hepatocytes. This prevented hepatocytes from up-regulating Yap1- and Hedgehog-regulated transcription factors that normally promote their proliferation. CONCLUSIONS: Morphogenic signaling in HSCs is necessary to reprogram hepatocytes to regenerate the liver epithelial compartment post-PH. This discovery identifies novel molecules that might be targeted to correct defective repair during cirrhosis and liver cancer. (Hepatology 2016;64:232-244).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Hedgehog/metabolismo , Células Estrelladas Hepáticas/metabolismo , Regeneración Hepática , Fosfoproteínas/metabolismo , Animales , Proteínas de Ciclo Celular , Desdiferenciación Celular , Proliferación Celular , Hepatectomía , Hepatocitos/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Comunicación Paracrina , Regulación hacia Arriba , Proteínas Señalizadoras YAP
5.
Gut ; 65(4): 683-92, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25596181

RESUMEN

OBJECTIVE: The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. DESIGN: PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. RESULTS: Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. CONCLUSIONS: PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches.


Asunto(s)
Conductos Biliares/patología , Proteínas Portadoras/fisiología , Movimiento Celular/fisiología , Citocinas/fisiología , Hepatopatías/patología , Animales , Biomarcadores/sangre , Western Blotting , Diferenciación Celular/fisiología , Inmunohistoquímica , Ratones , Ratones Noqueados , Fosfoproteínas/metabolismo , ARN/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Transducción de Señal
6.
Am J Pathol ; 185(7): 1944-57, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25989356

RESUMEN

The molecular events that link NADPH oxidase activation and the induction of Toll-like receptor (TLR)-4 recruitment into hepatic lipid rafts in nonalcoholic steatohepatitis (NASH) are unclear. We hypothesized that in liver, NADPH oxidase activation is key in TLR4 recruitment into lipid rafts, which in turn up-regulates NF-κB translocation to the nucleus and subsequent DNA binding, leading to NASH progression. Results from confocal microscopy showed that liver from murine and human NASH had NADPH oxidase activation, which led to the formation of highly reactive peroxynitrite, as shown by 3-nitrotyrosine formation in diseased liver. Expression and recruitment of TLR4 into the lipid rafts were significantly greater in rodent and human NASH. The described phenomenon was NADPH oxidase, p47phox, and peroxynitrite dependent, as liver from p47phox-deficient mice and from mice treated with a peroxynitrite decomposition catalyst [iron(III) tetrakis(p-sulfonatophenyl)porphyrin] or a peroxynitrite scavenger (phenylboronic acid) had markedly less Tlr4 recruitment into lipid rafts. Mechanistically, peroxynitrite-induced TLR4 recruitment was linked to increased IL-1ß, sinusoidal injury, and Kupffer cell activation while blocking peroxynitrite-attenuated NASH symptoms. The results strongly suggest that NADPH oxidase-mediated peroxynitrite drove TLR4 recruitment into hepatic lipid rafts and inflammation, whereas the in vivo use of the peroxynitrite scavenger phenylboronic acid, a novel synthetic molecule having high reactivity with peroxynitrite, attenuates inflammatory pathogenesis in NASH.


Asunto(s)
Microdominios de Membrana/patología , NADPH Oxidasas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Peroxinitroso/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Ácidos Borónicos/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Hígado/lesiones , Hígado/metabolismo , Hígado/patología , Masculino , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/enzimología , Transducción de Señal , Organismos Libres de Patógenos Específicos , Receptor Toll-Like 4/genética , Tirosina/análogos & derivados , Tirosina/metabolismo
7.
Am J Physiol Gastrointest Liver Physiol ; 308(4): G298-312, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25501551

RESUMEN

Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) is the common pathophysiological process resulting from chronic liver inflammation and oxidative stress. Although significant research has been carried out on the role of leptin-induced NADPH oxidase in fibrogenesis, the molecular mechanisms that connect the leptin-NADPH oxidase axis in upregulation of transforming growth factor (TGF)-ß signaling have been unclear. We aimed to investigate the role of leptin-mediated upregulation of NADPH oxidase and its subsequent induction of micro-RNA 21 (miR21) in fibrogenesis. Human NASH livers and a high-fat (60% kcal) diet-fed chronic mouse model, where hepatotoxin bromodichloromethane was used to induce NASH, were used for this study. To prove the role of the leptin-NADPH oxidase-miR21 axis, mice deficient in genes for leptin, p47phox, and miR21 were used. Results showed that wild-type mice and human livers with NASH had increased oxidative stress, increased p47phox expression, augmented NF-κB activation, and increased miR21 levels. These mice and human livers showed increased TGF-ß, SMAD2/3-SMAD4 colocalizations in the nucleus, increased immunoreactivity against Col1α, and α-SMA with a concomitant decrease in protein levels of SMAD7. Mice that were deficient in leptin or p47phox had decreased activated NF-κB and miR21 levels, suggesting the role of leptin and NADPH oxidase in inducing NF-κB-mediated miR21 expression. Further miR21 knockout mice had decreased colocalization events of SMAD2/3-SMAD4 in the nucleus, increased SMAD7 levels, and decreased fibrogenesis. Taken together, the studies show the novel role of leptin-NADPH oxidase induction of miR21 as a key regulator of TGF-ß signaling and fibrogenesis in experimental and human NASH.


Asunto(s)
Leptina/metabolismo , Hígado/enzimología , MicroARNs/metabolismo , NADPH Oxidasas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/enzimología , Interferencia de ARN , Proteína smad7/metabolismo , Animales , Estudios de Casos y Controles , Núcleo Celular/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Humanos , Leptina/deficiencia , Leptina/genética , Hígado/patología , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , NADPH Oxidasa 2 , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Estrés Oxidativo , Ácido Peroxinitroso/metabolismo , Transducción de Señal , Proteínas Smad Reguladas por Receptores/metabolismo , Proteína Smad4/metabolismo , Proteína smad7/deficiencia , Proteína smad7/genética , Factor de Crecimiento Transformador beta/metabolismo , Trihalometanos
8.
Am J Physiol Gastrointest Liver Physiol ; 308(4): G325-34, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25524063

RESUMEN

TNF-like weak inducer of apoptosis (TWEAK) is a growth factor for bipotent liver progenitors that express its receptor, fibroblast growth factor-inducible 14 (Fn14), a TNF receptor superfamily member. Accumulation of Fn14(+) progenitors occurs in severe acute alcoholic steatohepatitis (ASH) and correlates with acute mortality. In patients with severe ASH, inhibition of TNF-α increases acute mortality. The aim of this study was to determine whether deletion of Fn14 improves the outcome of liver injury in alcohol-consuming mice. Wild-type (WT) and Fn14 knockout (KO) mice were fed control high-fat Lieber deCarli diet or high-fat Lieber deCarli diet with 2% alcohol (ETOH) and injected intraperitoneally with CCl4 for 2 wk to induce liver injury. Mice were euthanized 3 or 10 days after CCl4 treatment. Survival was assessed. Liver tissues were analyzed for cell death, inflammation, proliferation, progenitor accumulation, and fibrosis by quantitative RT-PCR, immunoblot, hydroxyproline content, and quantitative immunohistochemistry. During liver injury, Fn14 expression, apoptosis, inflammation, hepatocyte replication, progenitor and myofibroblast accumulation, and fibrosis increased in WT mice fed either diet. Mice fed either diet expressed similar TWEAK/Fn14 levels, but ETOH-fed mice had higher TNF-α expression. The ETOH-fed group developed more apoptosis, inflammation, fibrosis, and regenerative responses. Fn14 deletion did not reduce hepatic TNF-α expression but improved all injury parameters in mice fed the control diet. In ETOH-fed mice, Fn14 deletion inhibited TNF-α induction and increased acute mortality, despite improvement in liver injury. Fn14 mediates wound-healing responses that are necessary to survive acute liver injury during alcohol exposure.


Asunto(s)
Hígado Graso Alcohólico/metabolismo , Hígado/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Enfermedad Aguda , Animales , Apoptosis , Tetracloruro de Carbono , Proliferación Celular , Modelos Animales de Enfermedad , Etanol , Hígado Graso Alcohólico/etiología , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/patología , Hidroxiprolina/metabolismo , Mediadores de Inflamación/metabolismo , Hígado/patología , Cirrosis Hepática Alcohólica/etiología , Cirrosis Hepática Alcohólica/metabolismo , Cirrosis Hepática Alcohólica/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores del Factor de Necrosis Tumoral/deficiencia , Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal , Receptor de TWEAK , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Cicatrización de Heridas
9.
J Pharmacol Exp Ther ; 352(1): 77-89, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25347994

RESUMEN

Activation of M1 macrophages in nonalcoholic steatohepatitis (NASH) is produced by several external or endogenous factors: inflammatory stimuli, oxidative stress, and cytokines are known. However, any direct role of oxidative stress in causing M1 polarization in NASH has been unclear. We hypothesized that CYP2E1-mediated oxidative stress causes M1 polarization in experimental NASH, and that nitric oxide (NO) donor administration inhibits CYP2E1-mediated inflammation with concomitant attenuation of M1 polarization. Because CYP2E1 takes center stage in these studies, we used a toxin model of NASH that uses a ligand and a substrate of CYP2E1 for inducing NASH. Subsequently, we used a methionine and choline-deficient diet-induced rodent NASH model where the role of CYP2E1 in disease progression has been shown. Our results show that CYP2E1 causes M1 polarization bias, which includes a significant increase in interleukin-1ß (IL-1ß) and IL-12 in both models of NASH, whereas CYP2E1-null mice or diallyl sulfide administration prevented it. Administration of gadolinium chloride (GdCl3), a macrophage toxin, attenuated both the initial M1 response and the subsequent M2 response, showing that the observed increase in cytokine levels is primarily from macrophages. Based on the evidence of an adaptive NO increase, the NO donor administration in vivo that mechanistically inhibited CYP2E1 catalyzed the oxidative stress during the entire study in NASH-abrogated M1 polarization and NASH progression. The results obtained show the association of CYP2E1 in M1 polarization, and that inhibition of CYP2E1 catalyzed oxidative stress by an NO donor (DETA NONOate [(Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate]) can be a promising therapeutic strategy in NASH.


Asunto(s)
Citocromo P-450 CYP2E1/metabolismo , Progresión de la Enfermedad , Macrófagos/efectos de los fármacos , Compuestos Nitrosos/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Citocromo P-450 CYP2E1/genética , Regulación de la Expresión Génica/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Masculino , Ratones , Ratones Obesos , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Compuestos Nitrosos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tirosina/metabolismo
10.
Hepatology ; 59(2): 471-82, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23913408

RESUMEN

UNLABELLED: Clinicians rely upon the severity of liver fibrosis to segregate patients with well-compensated nonalcoholic fatty liver disease (NAFLD) into subpopulations at high- versus low-risk for eventual liver-related morbidity and mortality. We compared hepatic gene expression profiles in high- and low-risk NAFLD patients to identify processes that distinguish the two groups and hence might be novel biomarkers or treatment targets. Microarray analysis was used to characterize gene expression in percutaneous liver biopsies from low-risk, "mild" NAFLD patients (fibrosis stage 0-1; n = 40) and high-risk, "severe" NAFLD patients (fibrosis stage 3-4; n = 32). Findings were validated in a second, independent cohort and confirmed by real-time polymerase chain reaction and immunohistochemistry (IHC). As a group, patients at risk for bad NAFLD outcomes had significantly worse liver injury and more advanced fibrosis (severe NAFLD) than clinically indistinguishable NAFLD patients with a good prognosis (mild NAFLD). A 64-gene profile reproducibly differentiated severe NAFLD from mild NAFLD, and a 20-gene subset within this profile correlated with NAFLD severity, independent of other factors known to influence NAFLD progression. Multiple genes involved with tissue repair/regeneration and certain metabolism-related genes were induced in severe NAFLD. Ingenuity Pathway Analysis and IHC confirmed deregulation of metabolic and regenerative pathways in severe NAFLD and revealed overlap among the gene expression patterns of severe NAFLD, cardiovascular disease, and cancer. CONCLUSION: By demonstrating specific metabolic and repair pathways that are differentially activated in livers with severe NAFLD, gene profiling identified novel targets that can be exploited to improve diagnosis and treatment of patients who are at greatest risk for NAFLD-related morbidity and mortality.


Asunto(s)
Enfermedades Asintomáticas , Hígado Graso/diagnóstico , Hígado Graso/genética , Hígado/metabolismo , Índice de Severidad de la Enfermedad , Transcriptoma , Adulto , Biopsia , Diagnóstico Diferencial , Hígado Graso/metabolismo , Femenino , Humanos , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Regeneración Hepática/genética , Masculino , Metabolismo/genética , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico , Pronóstico , Factores de Riesgo , Análisis de Matrices Tisulares
11.
Hepatology ; 58(5): 1801-13, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23703657

RESUMEN

UNLABELLED: Liver repair involves phenotypic changes in hepatic stellate cells (HSCs) and reactivation of morphogenic signaling pathways that modulate epithelial-to-mesenchymal/mesenchymal-to-epithelial transitions, such as Notch and Hedgehog (Hh). Hh stimulates HSCs to become myofibroblasts (MFs). Recent lineage tracing studies in adult mice with injured livers showed that some MFs became multipotent progenitors to regenerate hepatocytes, cholangiocytes, and HSCs. We studied primary HSC cultures and two different animal models of fibrosis to evaluate the hypothesis that activating the Notch pathway in HSCs stimulates them to become (and remain) MFs through a mechanism that involves an epithelial-to-mesenchymal-like transition and requires cross-talk with the canonical Hh pathway. We found that when cultured HSCs transitioned into MFs, they activated Hh signaling, underwent an epithelial-to-mesenchymal-like transition, and increased Notch signaling. Blocking Notch signaling in MFs/HSCs suppressed Hh activity and caused a mesenchymal-to-epithelial-like transition. Inhibiting the Hh pathway suppressed Notch signaling and also induced a mesenchymal-to-epithelial-like transition. Manipulating Hh and Notch signaling in a mouse multipotent progenitor cell line evoked similar responses. In mice, liver injury increased Notch activity in MFs and Hh-responsive MF progeny (i.e., HSCs and ductular cells). Conditionally disrupting Hh signaling in MFs of bile-duct-ligated mice inhibited Notch signaling and blocked accumulation of both MF and ductular cells. CONCLUSIONS: The Notch and Hedgehog pathways interact to control the fate of key cell types involved in adult liver repair by modulating epithelial-to-mesenchymal-like/mesenchymal-to-epithelial-like transitions.


Asunto(s)
Proteínas Hedgehog/fisiología , Células Estrelladas Hepáticas/fisiología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Linaje de la Célula , Dipéptidos/farmacología , Genotipo , Células Estrelladas Hepáticas/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/fisiología , Fenotipo , Proteínas Serrate-Jagged
12.
Gut ; 62(2): 299-309, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22362915

RESUMEN

OBJECTIVE: Vascular remodelling during liver damage involves loss of healthy liver sinusoidal endothelial cell (LSEC) phenotype via capillarisation. Hedgehog (Hh) signalling regulates vascular development and increases during liver injury. This study therefore examined its role in capillarisation. DESIGN: Primary LSEC were cultured for 5 days to induce capillarisation. Pharmacological, antibody-mediated and genetic approaches were used to manipulate Hh signalling. Effects on mRNA and protein expression of Hh-regulated genes and capillarisation markers were evaluated by quantitative reverse transcription PCR and immunoblot. Changes in LSEC function were assessed by migration and tube forming assay, and gain/loss of fenestrae was examined by electron microscopy. Mice with acute or chronic liver injury were treated with Hh inhibitors; effects on capillarisation were assessed by immunohistochemistry. RESULTS: Freshly isolated LSEC expressed Hh ligands, Hh receptors and Hh ligand antagonist Hhip. Capillarisation was accompanied by repression of Hhip and increased expression of Hh-regulated genes. Treatment with Hh agonist further induced expression of Hh ligands and Hh-regulated genes, and upregulated capillarisation-associated genes; whereas Hh signalling antagonist or Hh ligand neutralising antibody each repressed expression of Hh target genes and capillarisation markers. LSEC isolated from Smo(loxP/loxP) transgenic mice that had been infected with adenovirus expressing Cre-recombinase to delete Smoothened showed over 75% knockdown of Smoothened. During culture, Smoothened-deficient LSEC had inhibited Hh signalling, less induction of capillarisation-associated genes and retention of fenestrae. In mice with injured livers, inhibiting Hh signalling prevented capillarisation. CONCLUSIONS: LSEC produce and respond to Hh ligands, and use Hh signalling to regulate complex phenotypic changes that occur during capillarisation.


Asunto(s)
Acción Capilar , Células Endoteliales/fisiología , Proteínas Hedgehog/fisiología , Hígado/citología , Animales , Western Blotting , Movimiento Celular , Células Cultivadas , Enfermedad Crónica , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Inmunohistoquímica , Hepatopatías/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Rastreo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología
13.
Metabolites ; 14(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38921446

RESUMEN

Metabolomics can uncover physiological responses to prebiotic fibre and omega-3 fatty acid supplements with known health benefits and identify response-specific metabolites. We profiled 534 stool and 799 serum metabolites in 64 healthy adults following a 6-week randomised trial comparing daily omega-3 versus inulin supplementation. Elastic net regressions were used to separately identify the serum and stool metabolites whose change in concentration discriminated between the two types of supplementations. Random forest was used to explore the gut microbiome's contribution to the levels of the identified metabolites from matching stool samples. Changes in serum 3-carboxy-4-methyl-5-propyl-2-furanpropanoate and indoleproprionate levels accurately discriminated between fibre and omega-3 (area under the curve (AUC) = 0.87 [95% confidence interval (CI): 0.63-0.99]), while stool eicosapentaenoate indicated omega-3 supplementation (AUC = 0.86 [95% CI: 0.64-0.98]). Univariate analysis also showed significant increases in indoleproprionate with fibre, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate, and eicosapentaenoate with omega-3. Out of these, only the change in indoleproprionate was partly explained by changes in the gut microbiome composition (AUC = 0.61 [95% CI: 0.58-0.64] and Rho = 0.21 [95% CI: 0.08-0.34]) and positively correlated with the increase in the abundance of the genus Coprococcus (p = 0.005). Changes in three metabolites discriminated between fibre and omega-3 supplementation. The increase in indoleproprionate with fibre was partly explained by shifts in the gut microbiome, particularly Coprococcus, previously linked to better health.

14.
Gastroenterology ; 143(5): 1319-1329.e11, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22885334

RESUMEN

BACKGROUND & AIMS: The pathogenesis of cirrhosis, a disabling outcome of defective liver repair, involves deregulated accumulation of myofibroblasts derived from quiescent hepatic stellate cells (HSCs), but the mechanisms that control transdifferentiation of HSCs are poorly understood. We investigated whether the Hedgehog (Hh) pathway controls the fate of HSCs by regulating metabolism. METHODS: Microarray, quantitative polymerase chain reaction, and immunoblot analyses were used to identify metabolic genes that were differentially expressed in quiescent vs myofibroblast HSCs. Glycolysis and lactate production were disrupted in HSCs to determine if metabolism influenced transdifferentiation. Hh signaling and hypoxia-inducible factor 1α (HIF1α) activity were altered to identify factors that alter glycolytic activity. Changes in expression of genes that regulate glycolysis were quantified and localized in biopsy samples from patients with cirrhosis and liver samples from mice following administration of CCl(4) or bile duct ligation. Mice were given systemic inhibitors of Hh to determine if they affect glycolytic activity of the hepatic stroma; Hh signaling was also conditionally disrupted in myofibroblasts to determine the effects of glycolytic activity. RESULTS: Transdifferentiation of cultured, quiescent HSCs into myofibroblasts induced glycolysis and caused lactate accumulation. Increased expression of genes that regulate glycolysis required Hh signaling and involved induction of HIF1α. Inhibitors of Hh signaling, HIF1α, glycolysis, or lactate accumulation converted myofibroblasts to quiescent HSCs. In diseased livers of animals and patients, numbers of glycolytic stromal cells were associated with the severity of fibrosis. Conditional disruption of Hh signaling in myofibroblasts reduced numbers of glycolytic myofibroblasts and liver fibrosis in mice; similar effects were observed following administration of pharmacologic inhibitors of Hh. CONCLUSIONS: Hedgehog signaling controls the fate of HSCs by regulating metabolism. These findings might be applied to diagnosis and treatment of patients with cirrhosis.


Asunto(s)
Transdiferenciación Celular/genética , Regulación de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Células Estrelladas Hepáticas/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal/genética , Actinas/genética , Actinas/metabolismo , Animales , Conductos Biliares , Tetracloruro de Carbono , Células Cultivadas , Perfilación de la Expresión Génica , Glucólisis/genética , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/enzimología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ácido Láctico/metabolismo , Ligadura , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Miofibroblastos/enzimología , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , ARN Mensajero/metabolismo , Ratas , Factores de Tiempo
15.
Gut ; 61(9): 1323-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22427237

RESUMEN

OBJECTIVE: Immune responses are important in dictating non-alcoholic steatohepatitis (NASH) outcome. We previously reported that upregulation of hedgehog (Hh) and osteopontin (OPN) occurs in NASH, that Hh-regulated accumulation of natural killer T (NKT) cells promotes hepatic stellate cell (HSC) activation, and that cirrhotic livers harbour large numbers of NKT cells. DESIGN: The hypothesis that activated NKT cells drive fibrogenesis during NASH was evaluated by assessing if NKT depletion protects against NASH fibrosis; identifying the NKT-associated fibrogenic factors; and correlating plasma levels of the NKT cell-associated factor OPN with fibrosis severity in mice and humans. RESULTS: When fed methionine-choline-deficient (MCD) diets for 8 weeks, wild type (WT) mice exhibited Hh pathway activation, enhanced OPN expression, and NASH-fibrosis. Ja18-/- and CD1d-/- mice which lack NKT cells had significantly attenuated Hh and OPN expression and dramatically less fibrosis. Liver mononuclear cells (LMNCs) from MCD diet fed WT mice contained activated NKT cells, generated Hh and OPN, and stimulated HSCs to become myofibroblasts; neutralising these factors abrogated the fibrogenic actions of WT LMNCs. LMNCs from NKT-cell-deficient mice were deficient in fibrogenic factors, failing to activate collagen gene expression in HSCs. Human NASH livers with advanced fibrosis contained more OPN and Hh protein than those with early fibrosis. Plasma levels of OPN mirrored hepatic OPN expression and correlated with fibrosis severity. CONCLUSION: Hepatic NKT cells drive production of OPN and Hh ligands that promote fibrogenesis during NASH. Associated increases in plasma levels of OPN may provide a biomarker of NASH fibrosis.


Asunto(s)
Hígado Graso/metabolismo , Proteínas Hedgehog/fisiología , Células T Asesinas Naturales/inmunología , Osteopontina/metabolismo , Animales , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Fibrosis/inmunología , Fibrosis/metabolismo , Fibrosis/fisiopatología , Células Estrelladas Hepáticas/fisiología , Humanos , Inmunohistoquímica , Hígado/metabolismo , Activación de Linfocitos , Ratones , Enfermedad del Hígado Graso no Alcohólico , Osteopontina/sangre , Transducción de Señal
16.
Gut Microbes ; 15(1): 2240050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37526398

RESUMEN

Short-chain fatty acids (SCFA) are involved in immune system and inflammatory responses. We comprehensively assessed the host genetic and gut microbial contribution to a panel of eight serum and stool SCFAs in two cohorts (TwinsUK, n = 2507; ZOE PREDICT-1, n = 328), examined their postprandial changes and explored their links with chronic and acute inflammatory responses in healthy individuals and trauma patients. We report low concordance between circulating and fecal SCFAs, significant postprandial changes in most circulating SCFAs, and a heritable genetic component (average h2: serum = 14%(SD = 14%); stool = 12%(SD = 6%)). Furthermore, we find that gut microbiome can accurately predict their fecal levels (AUC>0.71) while presenting weaker associations with serum. Finally, we report different correlation patterns with inflammatory markers depending on the type of inflammatory response (chronic or acute trauma). Our results illustrate the breadth of the physiological relevance of SCFAs on human inflammatory and metabolic responses highlighting the need for a deeper understanding of this important class of molecules.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Ácidos Grasos Volátiles/metabolismo , Heces , Inflamación
17.
Diabetes ; 72(12): 1870-1880, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699401

RESUMEN

Prediabetes is a metabolic condition associated with gut microbiome composition, although mechanisms remain elusive. We searched for fecal metabolites, a readout of gut microbiome function, associated with impaired fasting glucose (IFG) in 142 individuals with IFG and 1,105 healthy individuals from the UK Adult Twin Registry (TwinsUK). We used the Cooperative Health Research in the Region of Augsburg (KORA) cohort (318 IFG individuals, 689 healthy individuals) to replicate our findings. We linearly combined eight IFG-positively associated metabolites (1-methylxantine, nicotinate, glucuronate, uridine, cholesterol, serine, caffeine, and protoporphyrin IX) into an IFG-metabolite score, which was significantly associated with higher odds ratios (ORs) for IFG (TwinsUK: OR 3.9 [95% CI 3.02-5.02], P < 0.0001, KORA: OR 1.3 [95% CI 1.16-1.52], P < 0.0001) and incident type 2 diabetes (T2D; TwinsUK: hazard ratio 4 [95% CI 1.97-8], P = 0.0002). Although these are host-produced metabolites, we found that the gut microbiome is strongly associated with their fecal levels (area under the curve >70%). Abundances of Faecalibacillus intestinalis, Dorea formicigenerans, Ruminococcus torques, and Dorea sp. AF24-7LB were positively associated with IFG, and such associations were partially mediated by 1-methylxanthine and nicotinate (variance accounted for mean 14.4% [SD 5.1], P < 0.05). Our results suggest that the gut microbiome is linked to prediabetes not only via the production of microbial metabolites but also by affecting intestinal absorption/excretion of host-produced metabolites and xenobiotics, which are correlated with the risk of IFG. Fecal metabolites enable modeling of another mechanism of gut microbiome effect on prediabetes and T2D onset. ARTICLE HIGHLIGHTS: Prediabetes is a metabolic condition associated with gut microbiome composition, although mechanisms remain elusive. We investigated whether there is a fecal metabolite signature of impaired fasting glucose (IFG) and the possible underlying mechanisms of action. We identified a fecal metabolite signature of IFG associated with prevalent IFG in two independent cohorts and incident type 2 diabetes in a subanalysis. Although the signature consists of metabolites of nonmicrobial origin, it is strongly correlated with gut microbiome composition. Fecal metabolites enable modeling of another mechanism of gut microbiome effect on prediabetes by affecting intestinal absorption or excretion of host compounds and xenobiotics.


Asunto(s)
Diabetes Mellitus Tipo 2 , Niacina , Estado Prediabético , Adulto , Humanos , Estado Prediabético/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Ayuno , Glucosa , Glucemia/metabolismo
18.
Cell Rep Med ; 4(4): 100993, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37023745

RESUMEN

Primary and secondary bile acids (BAs) influence metabolism and inflammation, and the gut microbiome modulates levels of BAs. We systematically explore the host genetic, gut microbial, and habitual dietary contribution to a panel of 19 serum and 15 stool BAs in two population-based cohorts (TwinsUK, n = 2,382; ZOE PREDICT-1, n = 327) and assess changes post-bariatric surgery and after nutritional interventions. We report that BAs have a moderately heritable genetic component, and the gut microbiome accurately predicts their levels in serum and stool. The secondary BA isoursodeoxycholate (isoUDCA) can be explained mostly by gut microbes (area under the receiver operating characteristic curve [AUC] = ∼80%) and associates with post-prandial lipemia and inflammation (GlycA). Furthermore, circulating isoUDCA decreases significantly 1 year after bariatric surgery (ß = -0.72, p = 1 × 10-5) and in response to fiber supplementation (ß = -0.37, p < 0.03) but not omega-3 supplementation. In healthy individuals, isoUDCA fasting levels correlate with pre-meal appetite (p < 1 × 10-4). Our findings indicate an important role for isoUDCA in lipid metabolism, appetite, and, potentially, cardiometabolic risk.


Asunto(s)
Cirugía Bariátrica , Ácidos y Sales Biliares , Humanos , Apetito , Cirugía Bariátrica/efectos adversos , Heces , Inflamación
19.
Hepatology ; 53(1): 106-15, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20967826

RESUMEN

UNLABELLED: Nonalcoholic steatohepatitis (NASH) is a leading cause of cirrhosis. Recently, we showed that NASH-related cirrhosis is associated with Hedgehog (Hh) pathway activation. The gene encoding osteopontin (OPN), a profibrogenic extracellular matrix protein and cytokine, is a direct transcriptional target of the Hh pathway. Thus, we hypothesize that Hh signaling induces OPN to promote liver fibrosis in NASH. Hepatic OPN expression and liver fibrosis were analyzed in wild-type (WT) mice, Patched-deficient (Ptc(+/-) ) (overly active Hh signaling) mice, and OPN-deficient mice before and after feeding methionine and choline-deficient (MCD) diets to induce NASH-related fibrosis. Hepatic OPN was also quantified in human NASH and nondiseased livers. Hh signaling was manipulated in cultured liver cells to assess direct effects on OPN expression, and hepatic stellate cells (HSCs) were cultured in medium with different OPN activities to determine effects on HSC phenotype. When fed MCD diets, Ptc(+/-) mice expressed more OPN and developed worse liver fibrosis (P < 0.05) than WT mice, whereas OPN-deficient mice exhibited reduced fibrosis (P < 0.05). In NASH patients, OPN was significantly up-regulated and correlated with Hh pathway activity and fibrosis stage. During NASH, ductular cells strongly expressed OPN. In cultured HSCs, SAG (an Hh agonist) up-regulated, whereas cyclopamine (an Hh antagonist) repressed OPN expression (P < 0.005). Cholangiocyte-derived OPN and recombinant OPN promoted fibrogenic responses in HSCs (P < 0.05); neutralizing OPN with RNA aptamers attenuated this (P < 0.05). CONCLUSION: OPN is Hh-regulated and directly promotes profibrogenic responses. OPN induction correlates with Hh pathway activity and fibrosis stage. Therefore, OPN inhibition may be beneficial in NASH.


Asunto(s)
Proteínas Hedgehog/fisiología , Cirrosis Hepática/etiología , Osteopontina/genética , Animales , Línea Celular , Deficiencia de Colina , Dieta , Hígado Graso/fisiopatología , Células Estrelladas Hepáticas , Humanos , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Osteopontina/biosíntesis , Osteopontina/deficiencia , Regulación hacia Arriba , Alcaloides de Veratrum/farmacología
20.
Metabolites ; 12(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36144194

RESUMEN

Non-O blood groups are associated with decreased insulin sensitivity and risk of type 2 diabetes. A recent study pinpointed the associations between ABO blood groups and gut microbiome, which may serve as potential mediators for the observed increased disease risks. We aimed to characterize associations between ABO haplotypes and insulin-related traits as well as potential mediating pathways. We assessed insulin homeostasis in African Americans (AAs; n = 109) and non-Hispanic whites (n = 210) from the Microbiome and Insulin Longitudinal Evaluation Study. The ABO haplotype was determined by six SNPs located in the ABO gene. Based on prior knowledge, we included 21 gut bacteria and 13 plasma metabolites for mediation analysis. In the white study cohort (60 ± 9 years, 42% male), compared to the O1 haplotype, A1 was associated with a higher Matsuda insulin sensitivity index, while a lower relative abundance of Bacteroides massiliensis and lactate levels. Lactate was a likely mediator of this association but not Bacteroides massiliensis. In the AAs group (57 ± 8 years, 33% male), we found no association between any haplotype and insulin-related traits. In conclusion, the A1 haplotype may promote healthy insulin sensitivity in non-Hispanic whites and lactate likely play a role in this process but not selected gut bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA