Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Am Chem Soc ; 145(36): 19578-19587, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651692

RESUMEN

Recent studies have demonstrated novel strategies for the organization of nanomaterials into three-dimensional (3D) ordered arrays with prescribed lattice symmetries using DNA-based self-assembly strategies. In one approach, the nanomaterial is sequestered into DNA origami frames or "material voxels" and then coordinated into ordered arrays based on the voxel geometry and the corresponding directional interactions based on its valency. While the lattice symmetry is defined by the valency of the bonds, a larger-scale morphological development is affected by assembly processes and differences in energies of anisotropic bonds. To facilely model this assembly process, we investigate the self-assembly behavior of hard particles with six interacting vertices via theory and Monte Carlo simulations and exploration of corresponding experimental systems. We demonstrate that assemblies with different 3D crystalline morphologies but the same lattice symmetry can be formed depending on the relative strength of vertex-to-vertex interactions in orthogonal directions. We observed three distinct assembly morphologies for such systems: cube-like, sheet-like, and cylinder-like. A simple analytical theory inspired by well-established ideas in the areas of protein crystallization, based on calculating the second virial coefficient of patchy hard spheres, captures the simulation results and thus represents a straightforward means of modeling this self-assembly process. To complement the theory and simulations, experimental studies were performed to investigate the assembly of octahedral DNA origami frames with varying binding energies at their vertices. X-ray scattering confirms the robustness of the formed nanoscale lattices for different binding energies, while both optical and electron microscopy imaging validated the theoretical predictions on the dependence of the distinct morphologies of assembled state on the interaction strengths in the three orthogonal directions.


Asunto(s)
ADN , Anisotropía , Simulación por Computador , Cristalización , Método de Montecarlo
2.
J Chem Phys ; 159(15)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37862110

RESUMEN

Bond-orientational order in DNA-assembled nanoparticles lattices is explored with the help of recently introduced Symmetry-specific Bond Order Parameters (SymBOPs). This approach provides a more sensitive analysis of local order than traditional scalar BOPs, facilitating the identification of coherent domains at the single bond level. The present study expands the method initially developed for assemblies of anisotropic particles to the isotropic ones or cases where particle orientation information is unavailable. The SymBOP analysis was applied to experiments on DNA-frame-based assembly of nanoparticle lattices. It proved highly sensitive in identifying coherent crystalline domains with different orientations, as well as detecting topological defects, such as dislocations. Furthermore, the analysis distinguishes individual sublattices within a single crystalline domain, such as pair of interpenetrating FCC lattices within a cubic diamond. The results underscore the versatility and robustness of SymBOPs in characterizing ordering phenomena, making them valuable tools for investigating structural properties in various systems.


Asunto(s)
ADN , Nanopartículas , ADN/química , Nanopartículas/química , Anisotropía
3.
Nano Lett ; 21(4): 1863-1870, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33576631

RESUMEN

The ability to create nanoengineered silicon carbide (SiC) architectures is important for the diversity of optical, electronic, and mechanical applications. Here, we report a fabrication of periodic three-dimensional (3D) SiC nanoscale architectures using a self-assembled and designed 3D DNA-based framework. The assembly is followed by the templating into silica and subsequent conversion into SiC using a lower temperature pathway (<700 °C) via magnesium reduction. The formed SiC framework lattice has a unit size of about 50 nm and domains over 5 µm, and it preserves the integrity of the original 3D DNA lattice. The spectroscopic and electron microscopy characterizations reveal SiC crystalline morphology of 3D nanoarchitectured lattices, whereas electrical probing shows 2 orders of magnitude enhancements of electrical conductivity over the precursor silica framework. The reported approach offers a versatile methodology toward creating highly structured and spatially prescribed SiC nanoarchitectures through the DNA-programmable assembly and the combination of templating processes.


Asunto(s)
Compuestos Inorgánicos de Carbono , Compuestos de Silicona , ADN/genética , Dióxido de Silicio
4.
Sci Adv ; 10(2): eadl0604, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198553

RESUMEN

Controlling the three-dimensional (3D) nanoarchitecture of inorganic materials is imperative for enabling their novel mechanical, optical, and electronic properties. Here, by exploiting DNA-programmable assembly, we establish a general approach for realizing designed 3D ordered inorganic frameworks. Through inorganic templating of DNA frameworks by liquid- and vapor-phase infiltrations, we demonstrate successful nanofabrication of diverse classes of inorganic frameworks from metal, metal oxide and semiconductor materials, as well as their combinations, including zinc, aluminum, copper, molybdenum, tungsten, indium, tin, and platinum, and composites such as aluminum-doped zinc oxide, indium tin oxide, and platinum/aluminum-doped zinc oxide. The open 3D frameworks have features on the order of nanometers with architecture prescribed by the DNA frames and self-assembled lattice. Structural and spectroscopic studies reveal the composition and organization of diverse inorganic frameworks, as well as the optoelectronic properties of selected materials. The work paves the road toward establishing a 3D nanoscale lithography.

5.
Science ; 376(6589): 203-207, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389786

RESUMEN

Advances in nanoscale self-assembly have enabled the formation of complex nanoscale architectures. However, the development of self-assembly strategies toward bottom-up nanofabrication is impeded by challenges in revealing these structures volumetrically at the single-component level and with elemental sensitivity. Leveraging advances in nano-focused hard x-rays, DNA-programmable nanoparticle assembly, and nanoscale inorganic templating, we demonstrate nondestructive three-dimensional imaging of complexly organized nanoparticles and multimaterial frameworks. In a three-dimensional lattice with a size of 2 micrometers, we determined the positions of about 10,000 individual nanoparticles with 7-nanometer resolution, and identified arrangements of assembly motifs and a resulting multimaterial framework with elemental sensitivity. The real-space reconstruction permits direct three-dimensional imaging of lattices, which reveals their imperfections and interfaces and also clarifies the relationship between lattices and assembly motifs.

6.
J Clin Psychol ; 67(2): 133-42, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21108314

RESUMEN

Psychotherapists from all professions and perspectives periodically struggle to effectively manage a patient's resistance to change. This article provides definitions and examples of patient-treatment matching applied to patient resistance or reactance. We report the results from an original meta-analysis of 12 select studies (N = 1,102) on matching therapist directiveness to patient reactance. Our findings support the hypothesis that patients exhibiting low levels of trait-like resistance respond better to directive types of treatment, while patients with high levels of resistance respond best to nondirective treatments (d = .82). Limitations of the research reviewed are noted, and practice recommendations are advanced.


Asunto(s)
Trastornos Mentales/psicología , Psicoterapia/métodos , Negativa del Paciente al Tratamiento , Humanos , Trastornos Mentales/terapia
7.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33741597

RESUMEN

Rapid developments of DNA-based assembly methods provide versatile capabilities in organizing nanoparticles (NPs) in three-dimensional (3D) organized nanomaterials, which is important for optics, catalysis, mechanics, and beyond. However, the use of these nanomaterials is often limited by the narrow range of conditions in which DNA lattices are stable. We demonstrate here an approach to creating an inorganic, silica-based replica of 3D periodic DNA-NP structures with different lattice symmetries. The created ordered nanomaterials, through the precise 3D mineralization, maintain the spatial topology of connections between NPs by DNA struts and exhibit a controllable degree of the porosity. The formed silicated DNA-NP lattices exhibit excellent resiliency. They are stable when exposed to extreme temperatures (>1000°C), pressures (8 GPa), and harsh radiation conditions and can be processed by the conventional nanolithography methods. The presented approach allows the use of a DNA assembly strategy to create organized nanomaterials for a broad range of operational conditions.


Asunto(s)
Nanopartículas , Nanoestructuras , ADN/química , Nanopartículas/química , Nanoestructuras/química , Porosidad , Dióxido de Silicio
8.
ACS Nano ; 14(6): 6823-6833, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32426966

RESUMEN

Directing the formation of nanoscale architectures from nanoparticles is one of the key challenges in designing nanomaterials with prescribed functions. Atomic systems, given their ability to form molecules and crystals via directional chemical bonds, provide an inspiration for establishing approaches where nanoparticles with designed anisotropic binding modalities can be assembled into nanoscale architectures. However, fabricating such nanoparticles has been challenging due to their small dimensions and limited ways for site-specific control of their surface. To this end, we present a molecular stamping (MOST) approach to pattern DNA-coated nanoparticles with molecules at the predefined positions on a nanoparticle surface. This patterning is realized by use of a rigid and coordinative DNA frame as a molecular stamping apparatus (MOST App). The MOST App transfers multiple types of molecular "inks", DNA sequences, onto a nanoparticle surface and fixes these molecular inks into place to form a designed pattern. After a nanoparticle is released the from MOST App, it possesses single-molecule patches that can provide anisotropic bonds with distinctive affinities. We further use these stamped nanoparticles to assemble prescribed clusters, whose structure is determined by the locations of patches. Using electron microscopy and tomographic methods, we investigate the efficiency of cluster formation and the resulting spatial arrangements of nanoparticles. The presented approach provides a single-molecule and spatially determined control over nanoparticle functionalization for creating nanoparticles with designed placement of different molecules and for realizing a rational fabrication of nanomaterial architectures.

9.
Nat Commun ; 11(1): 5697, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173061

RESUMEN

Studies of nanoscale superconducting structures have revealed various physical phenomena and led to the development of a wide range of applications. Most of these studies concentrated on one- and two-dimensional structures due to the lack of approaches for creation of fully engineered three-dimensional (3D) nanostructures. Here, we present a 'bottom-up' method to create 3D superconducting nanostructures with prescribed multiscale organization using DNA-based self-assembly methods. We assemble 3D DNA superlattices from octahedral DNA frames with incorporated nanoparticles, through connecting frames at their vertices, which result in cubic superlattices with a 48 nm unit cell. The superconductive superlattice is formed by converting a DNA superlattice first into highly-structured 3D silica scaffold, to turn it from a soft and liquid-environment dependent macromolecular construction into a solid structure, following by its coating with superconducting niobium (Nb). Through low-temperature electrical characterization we demonstrate that this process creates 3D arrays of Josephson junctions. This approach may be utilized in development of a variety of applications such as 3D Superconducting Quantum interference Devices (SQUIDs) for measurement of the magnetic field vector, highly sensitive Superconducting Quantum Interference Filters (SQIFs), and parametric amplifiers for quantum information systems.


Asunto(s)
ADN/química , Nanoestructuras/química , Superconductividad , Sistemas de Información , Campos Magnéticos , Nanopartículas del Metal/química , Niobio , Teoría Cuántica , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA