Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Appl Environ Microbiol ; 89(3): e0201022, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36847567

RESUMEN

In proglacial floodplains, glacier recession promotes biogeochemical and ecological gradients across relatively small spatial scales. The resulting environmental heterogeneity induces remarkable microbial biodiversity among proglacial stream biofilms. Yet the relative importance of environmental constraints in forming biofilm communities remains largely unknown. Extreme environmental conditions in proglacial streams may lead to the homogenizing selection of biofilm-forming microorganisms. However, environmental differences between proglacial streams may impose different selective forces, resulting in nested, spatially structured assembly processes. Here, we investigated bacterial community assembly processes by unraveling ecologically successful phylogenetic clades in two stream types (glacier-fed mainstems and non-glacier-fed tributaries) draining three proglacial floodplains in the Swiss Alps. Clades with low phylogenetic turnover rates were present in all stream types, including Gammaproteobacteria and Alphaproteobacteria, while the other clades were specific to one stream type. These clades constituted up to 34.8% and 31.1% of the community diversity and up to 61.3% and 50.9% of the relative abundances in mainstems and tributaries, respectively, highlighting their importance and success in these communities. Furthermore, the proportion of bacteria under homogeneous selection was inversely related to the abundance of photoautotrophs, and these clades may therefore decrease in abundance with the future "greening" of proglacial habitats. Finally, we found little effect of physical distance from the glacier on clades under selection in glacier-fed streams, probably due to the high hydrological connectivity of our study reaches. Overall, these findings shed new light on the mechanisms of microbial biofilm assembly in proglacial streams and help us to predict their future in a rapidly changing environment. IMPORTANCE Streams draining proglacial floodplains harbor benthic biofilms comprised of diverse microbial communities. These high-mountain ecosystems are rapidly changing with climate warming, and it is therefore critical to better understand the mechanisms underlying the assembly of their microbial communities. We found that homogeneous selection dominates the structuring of bacterial communities in benthic biofilms in both glacier-fed mainstems and nonglacier tributary streams within three proglacial floodplains in the Swiss Alps. However, differences between glacier-fed and tributary ecosystems may impose differential selective forces. Here, we uncovered nested, spatially structured assembly processes for proglacial floodplain communities. Our analyses additionally provided insights into linkages between aquatic photoautotrophs and the bacterial taxa under homogeneous selection, potentially by providing a labile source of carbon in these otherwise carbon-deprived systems. In the future, we expect a shift in the bacterial communities under homogeneous selection in glacier-fed streams as primary production becomes more important and streams become "greener".


Asunto(s)
Ecosistema , Microbiota , Filogenia , Biodiversidad , Bacterias/genética , Biopelículas
2.
Appl Environ Microbiol ; 88(12): e0042122, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35674429

RESUMEN

Microbial life in glacier-fed streams (GFSs) is dominated by benthic biofilms which fulfill critical ecosystem processes. However, it remains unclear how the bacterial communities of these biofilms assemble in stream ecosystems characterized by rapid turnover of benthic habitats and high suspended sediment loads. Using16S rRNA gene amplicon sequence data collected from 54 GFSs across the Himalayas, European Alps, and Scandinavian Mountains, we found that benthic biofilms harbor bacterial communities that are distinct from the bacterial assemblages suspended in the streamwater. Our data showed a decrease in species richness in the benthic biofilms compared to the bacterial cells putatively free-living in the water. The benthic biofilms also differed from the suspended water fractions in terms of community composition. Differential abundance analyses highlighted bacterial families that were specific to the benthic biofilms and the suspended assemblages. Notably, source-sink models suggested that the benthic biofilm communities are not simply a subset of the suspended assemblages. Rather, we found evidence that deterministic processes (e.g., species sorting) shape the benthic biofilm communities. This is unexpected given the high vertical mixing of water and contained bacterial cells in GFSs and further highlights the benthic biofilm mode of life as one that is determined through niche-related processes. Our findings therefore reveal a "native" benthic biofilm community in an ecosystem that is currently threatened by climate-induced glacier shrinkage. IMPORTANCE Benthic biofilms represent the dominant form of life in glacier-fed streams. However, it remains unclear how bacterial communities within these biofilms assemble. Our findings from glacier-fed streams from three major mountain ranges across the Himalayas, the European Alps and the Scandinavian Mountains reveal a bacterial community associated with benthic biofilms that is distinct from the assemblage in the overlying streamwater. Our analyses suggest that selection is the underlying process to this differentiation. This is unexpected given that bacterial cells that are freely living or attached to the abundant sediment particles suspended in the water continuously mix with the benthic biofilms. The latter colonize loose sediments that are subject to high turnover owing to the forces of the water flow. Our research unravels the existence of a microbiome specific to benthic biofilms in glacier-fed streams, now under major threats due to global warming.


Asunto(s)
Cubierta de Hielo , Microbiota , Bacterias/genética , Biodiversidad , Biopelículas , Ecosistema , Humanos , ARN Ribosómico 16S/genética , Ríos/microbiología , Agua
3.
Glob Chang Biol ; 28(12): 3846-3859, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35320603

RESUMEN

The shrinking of glaciers is among the most iconic consequences of climate change. Despite this, the downstream consequences for ecosystem processes and related microbiome structure and function remain poorly understood. Here, using a space-for-time substitution approach across 101 glacier-fed streams (GFSs) from six major regions worldwide, we investigated how glacier shrinkage is likely to impact the organic matter (OM) decomposition rates of benthic biofilms. To do this, we measured the activities of five common extracellular enzymes and estimated decomposition rates by using enzyme allocation equations based on stoichiometry. We found decomposition rates to average 0.0129 (% d-1 ), and that decreases in glacier influence (estimated by percent glacier catchment coverage, turbidity, and a glacier index) accelerates decomposition rates. To explore mechanisms behind these relationships, we further compared decomposition rates with biofilm and stream water characteristics. We found that chlorophyll-a, temperature, and stream water N:P together explained 61% of the variability in decomposition. Algal biomass, which is also increasing with glacier shrinkage, showed a particularly strong relationship with decomposition, likely indicating their importance in contributing labile organic compounds to these carbon-poor habitats. We also found high relative abundances of chytrid fungi in GFS sediments, which putatively parasitize these algae, promoting decomposition through a fungal shunt. Exploring the biofilm microbiome, we then sought to identify bacterial phylogenetic clades significantly associated with decomposition, and found numerous positively (e.g., Saprospiraceae) and negatively (e.g., Nitrospira) related clades. Lastly, using metagenomics, we found evidence of different bacterial classes possessing different proportions of EEA-encoding genes, potentially informing some of the microbial associations with decomposition rates. Our results, therefore, present new mechanistic insights into OM decomposition in GFSs by demonstrating that an algal-based "green food web" is likely to increase in importance in the future and will promote important biogeochemical shifts in these streams as glaciers vanish.


Asunto(s)
Cubierta de Hielo , Microbiota , Bacterias/genética , Cambio Climático , Ecosistema , Cubierta de Hielo/microbiología , Filogenia , Agua
4.
Artículo en Inglés | MEDLINE | ID: mdl-34214025

RESUMEN

A strictly aerobic, Gram-stain-negative, non-motile, rod-shaped bacterium, designated strain R1DC9T, was isolated from sediments of a mangrove stand on the Red Sea coast of Saudi Arabia via diffusion chamber cultivation. Strain R1DC9T grew at 20-40 °C (optimum, 37 °C), pH 6-10 (optimum, pH 8) and 3-11 % NaCl (optimum, 7-9 %) in the cultivation medium. The genome of R1DC9T was 4 661 901 bp long and featured a G+C content of 63.1 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis using 120 concatenated single-copy genes revealed that R1DC9T represents a distinct lineage in the order Cytophagales and the phylum Bacteroidetes separated from the Roseivirgaceae and Marivirgaceae families. R1DC9T displayed 90 and 89 % 16S rRNA gene sequence identities with Marivirga sericea DSM 4125T and Roseivirga ehrenbergii KMM 6017T, respectively. The predominant quinone was MK7. The polar lipids were phosphatidylethanolamine, two unknown phospholipids and two unknown lipids. The predominant cellular fatty acids were the saturated branch chain fatty acids iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 0, along with a low percentage of the monounsaturated fatty acid C16 : 1 ω5c. Based on differences in phenotypic, physiological and biochemical characteristics from known relatives, and the results of phylogenetic analyses, R1DC9T (=KCTC 72349T=JCM 33609T=NCCB 100698T) is proposed to represent a novel species in a new genus, and the name Mangrovivirga cuniculi gen. nov., sp. nov. is proposed. The distinct phylogenetic lineage among the families in the order Cytophagales indicates that R1DC9T represents a new family for which the name Mangrovivirgaceae fam. nov. is proposed.


Asunto(s)
Bacteroidetes/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Rhizophoraceae , Técnicas de Tipificación Bacteriana , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Océano Índico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Arabia Saudita , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-33999795

RESUMEN

We isolated a novel strain, R1DC25T, described as Kaustia mangrovi gen. nov. sp. nov. from the sediments of a mangrove forest on the coast of the Red Sea in Saudi Arabia. This isolate is a moderately halophilic, aerobic/facultatively anaerobic Gram-stain-negative bacterium showing optimum growth at between 30 and 40 °C, at a pH of 8.5 and with 3-5 % NaCl. The genome of R1DC25T comprises a circular chromosome that is 4 630 536 bp in length, with a DNA G+C content of 67.3 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis of 120 concatenated single-copy genes revealed that R1DC25T represents a distinct lineage within the family Parvibaculaceae in the order Rhizobiales within the class Alphaproteobacteria. R1DC25T showing 95.8, 95.3 and 94.5 % 16S rRNA gene sequence identity with Rhodoligotrophos appendicifer, Rhodoligotrophos jinshengii and Rhodoligotrophos defluvii, respectively. The predominant quinone was Q-10, and the polar lipids were phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, as well as several distinct aminolipids and lipids. The predominant cellular fatty acids were C19 : 0 cyclo ω8c, a combination of C18 : 1ω7c and/or C18 : 1ω6c and C16 : 0. On the basis of the differences in the phenotypic, physiological and biochemical characteristics from its known relatives and the results of our phylogenetic analyses, R1DC25T (=KCTC 72348T;=JCM 33619T;=NCCB 100699T) is proposed to represent a novel species in a novel genus, and we propose the name Kaustia mangrovi gen. nov., sp. nov. (Kaustia, subjective name derived from the abbreviation KAUST for King Abdullah University of Science and Technology; mangrovi, of a mangrove).


Asunto(s)
Alphaproteobacteria/clasificación , Filogenia , Rhizophoraceae/microbiología , Humedales , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Océano Índico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Arabia Saudita , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
6.
Environ Sci Technol ; 53(11): 6520-6528, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31050420

RESUMEN

The process of natural transformation allows for the stable uptake, integration, and functional expression of extracellular DNA. This mechanism of horizontal gene transfer has been widely linked to the acquisition of antibiotic resistance and virulence factors. Here, we demonstrate that bromoacetic acid (BAA)-a regulated drinking water disinfection byproduct (DBP)-can stimulate natural transformation rates in the model organism Acinetobacter baylyi ADP1. We demonstrate that transformation stimulation in response to BAA is concentration-dependent and is linked to the ability of this compound to generate DNA damage via oxidative stress. In presence of BAA, transcription of recA was upregulated 20-40% compared to the nontreated controls, indicating that this component of the DNA damage response could be associated with the increase in transformation. Other genes associated with DNA translocation across the cytoplasmic membrane (i.e., pilX, comA) did not exhibit increased transcription in the presence of BAA, indicating that the enhancement of transformation is not associated with increased translocation rates of environmental DNA. Overall, these results lead us to speculate that elevated recA transcription levels could lead to increased integration rates of foreign DNA within the recipient cell during DNA repair. Lastly, we show that an artificial DBP cocktail simulating the environmental concentrations of five water DBP classes stimulates natural transformation by almost 2-fold. The results of this study suggest that mutagens like DBPs may play an important role in enhancing the fixation rates of extracellular DNA in the environmental metagenome.


Asunto(s)
Acinetobacter , ADN , Daño del ADN , Desinfección , Agua
7.
Environ Microbiol ; 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29786171

RESUMEN

It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes.

8.
Langmuir ; 34(35): 10419-10425, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30086639

RESUMEN

In live cells, high concentrations up to 300-400 mg/mL, as in Eschericia coli (Ellis, R. J. Curr. Opin. Struct. Biol. 2001, 11, 114) are achieved which have effects on their proper functioning. However, in many experiments only individual parts of the cells as proteins or membranes are studied in order to get insight into these specific components and to avoid the high complexity of whole cells, neglecting by the way the influence of crowding. In the present study, we investigated cells of the order of Thermococcales, which are known to live under extreme conditions, in their intact form and after cell lysis to extract the effect of crowding on the molecular dynamics of the proteome and of water molecules. We found that some parameters characterizing the dynamics within the cells seem to be intrinsic to the cell type, as flexibility typical for the proteome, others are more specific to the cellular environment, as bulk water's residence time and some fractions of particles participating to the different motions, which make the lysed cells' dynamics similar to the one of another Thermococcale adapted to live under high hydrostatic pressure. In contrast to studies on the impact of crowding on pure proteins we show here that the release of crowding constraints on proteins leads to an increase in the rigidity and a decrease in the high pressure sensitivity. In a way similar to high pressure adaptation in piezophiles, the hydration water layer is decreased for the lysed cells, demonstrating a first link between protein adaptation and the impact of crowding or osmolytes on proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Presión Hidrostática , Estabilidad Proteica , Thermococcales/metabolismo , Agua/química
10.
Int J Syst Evol Microbiol ; 66(8): 3142-3149, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27189596

RESUMEN

A novel hyperthermophilic, piezophilic, anaerobic archaeon, designated NCB100T, was isolated from a hydrothermal vent flange fragment collected in the Guaymas basin at the hydrothermal vent site named 'Rebecca's Roost' at a depth of 1997 m. Enrichment and isolation were performed at 100 °C under atmospheric pressure. Cells of strain NCB100T were highly motile, irregular cocci with a diameter of ~1 µm. Growth was recorded at temperatures between 70 and 112 °C (optimum 105 °C) and hydrostatic pressures of 0.1-80 MPa (optimum 40-50 MPa). Growth was observed at pH 3.5-8.5 (optimum pH 7) and with 1.5-7 % NaCl (optimum at 2.5-3 %). Strain NCB100T was a strictly anaerobic chemo-organoheterotroph and grew on complex proteinaceous substrates such as yeast extract, peptone and tryptone, as well as on glycogen and starch. Elemental sulfur was required for growth and was reduced to hydrogen sulfide. The fermentation products from complex proteinaceous substrates were CO2 and H2. The G+C content of the genomic DNA was 41.3 %. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain NCB100T belongs to the genus Pyrococcus, showing 99 % similarity with the other described species of the genus Pyrococcus. On the basis of physiological characteristics, DNA G+C content, similarity level between ribosomal proteins and an average nucleotide identity value of 79 %, strain NCB100T represents a novel species for which the name Pyrococcus kukulkanii sp. nov. is proposed. The type strain is NCB100T (=DSM 101590T=Souchothèque de Bretagne BG1337T).


Asunto(s)
Respiraderos Hidrotermales/microbiología , Filogenia , Pyrococcus/clasificación , Agua de Mar/microbiología , Composición de Base , ADN de Archaea/genética , Calor , Presión Hidrostática , Pyrococcus/genética , Pyrococcus/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Environ Microbiol ; 17(9): 3278-88, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25630351

RESUMEN

Prokaryotic viruses play a major role in the microbial ecology and evolution. However, the virosphere associated with deep-sea hydrothermal ecosystems remains largely unexplored. Numerous instances of lateral gene transfer have contributed to the complex and incongruent evolutionary history of Thermotogales, an order well represented in deep-sea hydrothermal vents. The presence of clustered regularly interspaced short palindromic repeats (CRISPR) loci has been reported in all Thermotogales genomes, suggesting that these bacteria have been exposed to viral infections that could have mediated gene exchange. In this study, we isolated and characterized the first virus infecting bacteria from the order Thermotogales, Marinitoga piezophila virus 1 (MPV1). The host, Marinitoga piezophila is a thermophilic, anaerobic and piezophilic bacterium isolated from a deep-sea hydrothermal chimney. MPV1 is a temperate Siphoviridae-like virus with a 43.7 kb genome. Surprisingly, we found that MPV1 virions carry not only the viral DNA but preferentially package a plasmid of 13.3 kb (pMP1) also carried by M. piezophila. This 'ménage à trois' highlights potential relevance of selfish genetic elements in facilitating lateral gene transfer in the deep-sea biosphere.


Asunto(s)
Bacterias/virología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Transferencia de Gen Horizontal/genética , Respiraderos Hidrotermales/microbiología , Plásmidos/genética , Siphoviridae/genética , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Viral/genética , Dosificación de Gen/efectos de los fármacos , Dosificación de Gen/genética , Respiraderos Hidrotermales/virología , Mitomicina/farmacología
12.
Appl Environ Microbiol ; 80(7): 2299-306, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24487541

RESUMEN

In this study, we developed a gene disruption system for Thermococcus barophilus using simvastatin for positive selection and 5-fluoroorotic acid (5-FOA) for negative selection or counterselection to obtain markerless deletion mutants using single- and double-crossover events. Disruption plasmids carrying flanking regions of each targeted gene were constructed and introduced by transformation into wild-type T. barophilus MP cells. Initially, a pyrF deletion mutant was obtained as a starting point for the construction of further markerless mutants. A deletion of the hisB gene was also constructed in the UBOCC-3256 (ΔpyrF) background, generating a strain (UBOCC-3260) that was auxotrophic for histidine. A functional pyrF or hisB allele from T. barophilus was inserted into the chromosome of UBOCC-3256 (ΔpyrF) or UBOCC-3260 (ΔpyrF ΔhisB), allowing homologous complementation of these mutants. The piezophilic genetic tools developed in this study provide a way to construct strains with multiple genetic backgrounds that will allow further genetic studies for hyperthermophilic piezophilic archaea.


Asunto(s)
Técnicas de Inactivación de Genes/métodos , Genética Microbiana/métodos , Biología Molecular/métodos , Mutagénesis Insercional/métodos , Thermococcus/genética , Eliminación de Gen , Plásmidos , Selección Genética , Transformación Genética
13.
Environ Sci Pollut Res Int ; 30(26): 69150-69164, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37133655

RESUMEN

Understanding the immediate impacts of oil spills is essential to recognizing their long-term consequences on the marine environment. In this study, we traced the early (within one week) signals of crude oil in seawater and plankton after a major oil spill in October 2019 in the Red Sea. At the time of sampling, the plume had moved eastward, but we detected significant signs of incorporation of oil carbon into the dissolved organic carbon pool, resulting in a 10-20% increase in the ultraviolet (UV) absorption coefficient (a254) of chromophoric dissolved organic matter (CDOM), elevated oil fluorescence emissions, and depletion of the carbon isotope composition (δ13C) of the seawater. The abundance of the picophytoplankton Synechococcus was not affected, but the proportion of low nucleic acid (LNA) bacteria was significantly higher. Moreover, specific bacterial genera (Alcanivorax, Salinisphaera, and Oleibacter) were enriched in the seawater microbiome. Metagenome-assembled genomes (MAGs) suggested that such bacteria presented pathways for growing on oil hydrocarbons. Traces of polycyclic aromatic hydrocarbons (PAHs) were also detected in zooplankton tissues, revealing the rapid entry of oil pollutants into the pelagic food web. Our study emphasizes the early signs of short-lived spills as an important aspect of the prediction of long-term impacts of marine oil spills.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Synechococcus , Contaminantes Químicos del Agua , Contaminación por Petróleo/análisis , Plancton/metabolismo , Petróleo/análisis , Océano Índico , Agua de Mar/microbiología , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
14.
Front Microbiol ; 14: 1155381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200916

RESUMEN

Introduction: The geological isolation, lack of freshwater inputs and specific internal water circulations make the Red Sea one of the most extreme-and unique-oceans on the planet. Its high temperature, salinity and oligotrophy, along with the consistent input of hydrocarbons due to its geology (e.g., deep-sea vents) and high oil tankers traffic, create the conditions that can drive and influence the assembly of unique marine (micro)biomes that evolved to cope with these multiple stressors. We hypothesize that mangrove sediments, as a model-specific marine environment of the Red Sea, act as microbial hotspots/reservoirs of such diversity not yet explored and described. Methods: To test our hypothesis, we combined oligotrophic media to mimic the Red Sea conditions and hydrocarbons as C-source (i.e., crude oil) with long incubation time to allow the cultivation of slow-growing environmentally (rare or uncommon) relevant bacteria. Results and discussion: This approach reveals the vast diversity of taxonomically novel microbial hydrocarbon degraders within a collection of a few hundred isolates. Among these isolates, we characterized a novel species, Nitratireductor thuwali sp. nov., namely, Nit1536T. It is an aerobic, heterotrophic, Gram-stain-negative bacterium with optimum growth at 37°C, 8 pH and 4% NaCl, whose genome and physiological analysis confirmed the adaptation to extreme and oligotrophic conditions of the Red Sea mangrove sediments. For instance, Nit1536T metabolizes different carbon substrates, including straight-chain alkanes and organic acids, and synthesizes compatible solutes to survive in salty mangrove sediments. Our results showed that the Red Sea represent a source of yet unknown novel hydrocarbon degraders adapted to extreme marine conditions, and their discovery and characterization deserve further effort to unlock their biotechnological potential.

15.
Front Microbiol ; 14: 1271535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029212

RESUMEN

Introduction: Marine viruses regulate microbial population dynamics and biogeochemical cycling in the oceans. The ability of viruses to manipulate hosts' metabolism through the expression of viral auxiliary metabolic genes (AMGs) was recently highlighted, having important implications in energy production and flow in various aquatic environments. Up to now, the presence and diversity of viral AMGs is studied using -omics data, and rarely using quantitative measures of viral activity alongside. Methods: In the present study, four depth layers (5, 50, 75, and 1,000 m) with discrete hydrographic features were sampled in the Eastern Mediterranean Sea; we studied lytic viral community composition and AMG content through metagenomics, and lytic production rates through the viral reduction approach in the ultra-oligotrophic Levantine basin where knowledge regarding viral actions is rather limited. Results and Discussion: Our results demonstrate depth-dependent patterns in viral diversity and AMG content, related to differences in temperature, nutrients availability, and host bacterial productivity and abundance. Although lytic viral production rates were similar along the water column, the virus-to-bacteria ratio was higher and the particular set of AMGs was more diverse in the bathypelagic (1,000 m) than the shallow epipelagic (5, 50, and 75 m) layers, revealing that the quantitative effect of viruses on their hosts may be the same along the water column through the intervention of different AMGs. In the resource- and energy-limited bathypelagic waters of the Eastern Mediterranean, the detected AMGs could divert hosts' metabolism toward energy production, through a boost in gluconeogenesis, fatty-acid and glycan biosynthesis and metabolism, and sulfur relay. Near the deep-chlorophyll maximum depth, an exceptionally high percentage of AMGs related to photosynthesis was noticed. Taken together our findings suggest that the roles of viruses in the deep sea might be even more important than previously thought as they seem to orchestrate energy acquisition and microbial community dynamics, and thus, biogeochemical turnover in the oceans.

16.
Microbiome ; 11(1): 189, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37612775

RESUMEN

BACKGROUND: The transition from water to air is a key event in the evolution of many marine organisms to access new food sources, escape water hypoxia, and exploit the higher and temperature-independent oxygen concentration of air. Despite the importance of microorganisms in host adaptation, their contribution to overcoming the challenges posed by the lifestyle changes from water to land is not well understood. To address this, we examined how microbial association with a key multifunctional organ, the gill, is involved in the intertidal adaptation of fiddler crabs, a dual-breathing organism. RESULTS: Electron microscopy revealed a rod-shaped bacterial layer tightly connected to the gill lamellae of the five crab species sampled across a latitudinal gradient from the central Red Sea to the southern Indian Ocean. The gill bacterial community diversity assessed with 16S rRNA gene amplicon sequencing was consistently low across crab species, and the same actinobacterial group, namely Ilumatobacter, was dominant regardless of the geographic location of the host. Using metagenomics and metatranscriptomics, we detected that these members of actinobacteria are potentially able to convert ammonia to amino acids and may help eliminate toxic sulphur compounds and carbon monoxide to which crabs are constantly exposed. CONCLUSIONS: These results indicate that bacteria selected on gills can play a role in the adaptation of animals in dynamic intertidal ecosystems. Hence, this relationship is likely to be important in the ecological and evolutionary processes of the transition from water to air and deserves further attention, including the ontogenetic onset of this association. Video Abstract.


Asunto(s)
Actinobacteria , Braquiuros , Animales , Branquias , Ecosistema , Adaptación al Huésped , ARN Ribosómico 16S/genética , Bacterias/genética
17.
R Soc Open Sci ; 10(8): 230329, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37564072

RESUMEN

The glaciers on Africa's 'Mountains of the Moon' (Rwenzori National Park, Uganda) are predicted to disappear within the next decades owing to climate change. Consequently, the glacier-fed streams (GFSs) that drain them will vanish, along with their resident microbial communities. Despite the relevance of microbial communities for performing ecosystem processes in equatorial GFSs, their ecology remains understudied. Here, we show that the benthic microbiome from the Mt. Stanley GFS is distinct at several levels from other GFSs. Specifically, several novel taxa were present, and usually common groups such as Chrysophytes and Polaromonas exhibited lower relative abundances compared to higher-latitude GFSs, while cyanobacteria and diatoms were more abundant. The rich primary producer community in this GFS likely results from the greater environmental stability of the Afrotropics, and accordingly, heterotrophic processes dominated in the bacterial community. Metagenomics revealed that almost all prokaryotes in the Mt. Stanley GFS are capable of organic carbon oxidation, while greater than 80% have the potential for fermentation and acetate oxidation. Our findings suggest a close coupling between photoautotrophs and other microbes in this GFS, and provide a glimpse into the future for high-latitude GFSs globally where primary production is projected to increase with ongoing glacier shrinkage.

18.
Microbiol Spectr ; 11(1): e0406922, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36688698

RESUMEN

Antimicrobial resistance (AMR) is a universal phenomenon the origins of which lay in natural ecological interactions such as competition within niches, within and between micro- to higher-order organisms. To study these phenomena, it is crucial to examine the origins of AMR in pristine environments, i.e., limited anthropogenic influences. In this context, epilithic biofilms residing in glacier-fed streams (GFSs) are an excellent model system to study diverse, intra- and inter-domain, ecological crosstalk. We assessed the resistomes of epilithic biofilms from GFSs across the Southern Alps (New Zealand) and the Caucasus (Russia) and observed that both bacteria and eukaryotes encoded twenty-nine distinct AMR categories. Of these, beta-lactam, aminoglycoside, and multidrug resistance were both abundant and taxonomically distributed in most of the bacterial and eukaryotic phyla. AMR-encoding phyla included Bacteroidota and Proteobacteria among the bacteria, alongside Ochrophyta (algae) among the eukaryotes. Additionally, biosynthetic gene clusters (BGCs) involved in the production of antibacterial compounds were identified across all phyla in the epilithic biofilms. Furthermore, we found that several bacterial genera (Flavobacterium, Polaromonas, Superphylum Patescibacteria) encode both atimicrobial resistance genes (ARGs) and BGCs within close proximity of each other, demonstrating their capacity to simultaneously influence and compete within the microbial community. Our findings help unravel how naturally occurring BGCs and AMR contribute to the epilithic biofilms mode of life in GFSs. Additionally, we report that eukaryotes may serve as AMR reservoirs owing to their potential for encoding ARGs. Importantly, these observations may be generalizable and potentially extended to other environments that may be more or less impacted by human activity. IMPORTANCE Antimicrobial resistance is an omnipresent phenomenon in the anthropogenically influenced ecosystems. However, its role in shaping microbial community dynamics in pristine environments is relatively unknown. Using metagenomics, we report the presence of antimicrobial resistance genes and their associated pathways in epilithic biofilms within glacier-fed streams. Importantly, we observe biosynthetic gene clusters associated with antimicrobial resistance in both pro- and eukaryotes in these biofilms. Understanding the role of resistance in the context of this pristine environment and complex biodiversity may shed light on previously uncharacterized mechanisms of cross-domain interactions.


Asunto(s)
Microbiota , Ríos , Humanos , Ríos/microbiología , Cubierta de Hielo , Bacterias/genética , Familia de Multigenes , Biopelículas , Antibacterianos/farmacología
19.
Front Microbiol ; 13: 777986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250919

RESUMEN

Mangrove forests are dynamic and productive ecosystems rich in microbial diversity; it has been estimated that microbial cells in the mangrove sediments constitute up to 91% of the total living biomass of these ecosystems. Despite in this ecosystem many of the ecological functions and services are supported and/or carried out by microorganisms (e.g., nutrient cycling and eukaryotic-host adaptation), their diversity and function are overlooked and poorly explored, especially for the oligotrophic mangrove of the Red Sea coast. Here, we investigated the cultivable fraction of bacteria associated with the sediments of Saudi Arabian Red Sea mangrove forest by applying the diffusion-chamber-based approach in combination with oligotrophic medium and long incubation time to allow the growth of bacteria in their natural environment. Cultivation resulted in the isolation of numerous representatives of Isoptericola (n = 51) and Marinobacter (n = 38), along with several less abundant and poorly study taxa (n = 25) distributed across ten genera. Within the latest group, we isolated R1DC41T, a novel member of the Bacillaceae family in the Firmicutes phylum. It showed 16S rRNA gene similarity of 94.59-97.36% with closest relatives of Rossellomorea (which was formerly in the Bacillus genus), Domibacillus, Bacillus, and Jeotgalibacillus genera. Based on the multilocus sequence analysis (MLSA), R1DC41T strain formed a separated branch from the listed genera, representing a novel species of a new genus for which the name Mangrovibacillus cuniculi gen. nov., sp. nov. is proposed. Genomic, morphological, and physiological characterizations revealed that R1DC41T is an aerobic, Gram-stain-variable, rod-shaped, non-motile, endospore-forming bacterium. A reduced genome and the presence of numerous transporters used to import the components necessary for its growth and resistance to the stresses imposed by the oligotrophic and salty mangrove sediments make R1DC41T extremely adapted to its environment of origin and to the competitive conditions present within.

20.
Nat Commun ; 13(1): 3087, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655063

RESUMEN

The melting of the cryosphere is among the most conspicuous consequences of climate change, with impacts on microbial life and related biogeochemistry. However, we are missing a systematic understanding of microbiome structure and function across cryospheric ecosystems. Here, we present a global inventory of the microbiome from snow, ice, permafrost soils, and both coastal and freshwater ecosystems under glacier influence. Combining phylogenetic and taxonomic approaches, we find that these cryospheric ecosystems, despite their particularities, share a microbiome with representatives across the bacterial tree of life and apparent signatures of early and constrained radiation. In addition, we use metagenomic analyses to define the genetic repertoire of cryospheric bacteria. Our work provides a reference resource for future studies on climate change microbiology.


Asunto(s)
Microbiota , Hielos Perennes , Cambio Climático , Microbiota/genética , Filogenia , Nieve
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA