Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Genet ; 16(10): e1008926, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33090996

RESUMEN

The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models.


Asunto(s)
Enanismo/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Genoma/genética , Uridina Difosfato Glucosa Deshidrogenasa/genética , Secuenciación Completa del Genoma , Alelos , Animales , Gatos , Mapeo Cromosómico , Predisposición Genética a la Enfermedad , Genómica , Humanos , Masculino , Anotación de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple/genética
2.
J Feline Med Surg ; 25(6): 1098612X231165630, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37387221

RESUMEN

OBJECTIVES: A 14-week-old female domestic longhair kitten presented with shifting lameness and disproportionately smaller size compared with a co-housed littermate. METHODS: Hematology and serum biochemical testing were conducted to investigate causes for delayed growth, and radiographs of the appendicular skeleton were obtained. RESULTS: The afflicted kitten had marked hypocalcemia, mild hypophosphatemia and substantial elevations in alkaline phosphatase activity, as well as pathognomonic radiographic findings consistent with rickets. Skeletal changes and hypocalcemia prompted testing of concentrations of parathyroid hormone (PTH) and vitamin D metabolites. Endocrine testing demonstrated significant increases in serum concentrations of PTH and 1,25-dihydroxycholecalciferol (calcitriol), supporting a diagnosis of vitamin D-dependent rickets type 2. Provision of analgesia, supraphysiologic doses of calcitriol and calcium carbonate supplementation achieved normalization of the serum calcium concentration and restoration of normal growth, although some skeletal abnormalities persisted. Once skeletally mature, ongoing calcitriol supplementation was not required. Whole-exome sequencing (WES) was conducted to identify the underlying DNA variant. A cytosine deletion at cat chromosome position B4:76777621 in VDR (ENSFCAT00000029466:c.106delC) was identified and predicted to cause a stop codon in exon 2 (p.Arg36Glufs*18), disrupting >90% of the receptor. The variant was unique and homozygous in this patient and absent in the sibling and approximately 400 other cats for which whole-genome and whole-exome data were available. CONCLUSIONS AND RELEVANCE: A unique, heritable form of rickets was diagnosed in a domestic longhair cat. WES identified a novel frameshift mutation affecting the gene coding for the vitamin D3 receptor, determining the likely causal genetic variant. Precision medicine techniques, including whole-exome and whole-genome sequencing, can be a standard of care in cats to identify disease etiologies, and to target therapeutics and personalize treatment.


Asunto(s)
Enfermedades de los Gatos , Hipocalcemia , Raquitismo , Femenino , Gatos , Animales , Medicina de Precisión/veterinaria , Secuenciación del Exoma/veterinaria , Calcitriol , Hipocalcemia/veterinaria , Mutación del Sistema de Lectura , Raquitismo/diagnóstico , Raquitismo/tratamiento farmacológico , Raquitismo/genética , Raquitismo/veterinaria , Enfermedades de los Gatos/tratamiento farmacológico , Enfermedades de los Gatos/genética
3.
J Nutr Metab ; 2017: 4535710, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225968

RESUMEN

INTRODUCTION: The domesticated dog, Canis lupus familiaris, has been selectively bred to produce extreme diversity in phenotype and genotype. Dogs have an immense diversity in weight and height. Specific differences in metabolism have not been characterized in small dogs as compared to larger dogs. OBJECTIVES: This study aims to identify metabolic, clinical, and microbiota differences between small and larger dogs. METHODS: Gas chromatography/mass spectrometry, liquid chromatography/tandem mass spectrometry, clinical chemistry analysis, dual-energy X-ray absorptiometry, and 16S pyrosequencing were used to characterize blood metabolic, clinical, and fecal microbiome systems, respectively. Eighty-three canines from seven different breeds, fed the same kibble diet for 5 weeks, were used in the study. RESULTS: 449 metabolites, 16 clinical parameters, and 6 bacteria (at the genus level) were significantly different between small and larger dogs. Hierarchical clustering of the metabolites yielded 8 modules associated with small dog size. CONCLUSION: Small dogs had a lower antioxidant status and differences in circulating amino acids. Some of the amino acid differences could be attributed to differences in microflora. Additionally, analysis of small dog metabolites and clinical parameters reflected a network which strongly associates with kidney function.

4.
Am J Vet Res ; 76(4): 338-50, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25815575

RESUMEN

OBJECTIVE: To characterize the postprandial nutrient profiles of exercise-conditioned dogs fed a supplemental carbohydrate and protein bar with or without astaxanthin from Haematococcus pluvialis immediately after exercise. ANIMALS: 34 exercise-conditioned adult Husky-Pointer dogs. PROCEDURES: The study had 2 phases. During phase 1, postprandial plasma glucose concentration was determined for dogs fed a bar containing 25% protein and 18.5% or 37.4% maltodextrin plus dextrin (rapidly digestible carbohydrate; RDC), or dry kibble (30% protein and 0% RDC) immediately after exercise. During phase 2, dogs were exercised for 3 days and fed a bar (25% protein and 37.4% RDC) with (CPA; n = 8) or without (CP; 8) astaxanthin or no bar (control; 8) immediately after exercise. Pre- and postexercise concentrations of plasma biochemical analytes and serum amino acids were determined on days 1 and 3. RESULTS: Phase 1 postexercise glucose concentration was increased when dogs were provided the 37.4% RDC bar, but not 0% or 18.5% RDC. On day 3 of phase 2, the CPA group had the highest pre-exercise triglyceride concentration and significantly less decline in postexercise glucose concentration than did the CP and control groups. Mean glucose concentration for the CP and CPA groups was significantly higher than that for the control group between 15 and 60 minutes after bar consumption. Compared to immediately after exercise, branched-chain amino acid, tryptophan, leucine, and threonine concentrations 15 minutes after exercise were significantly higher for the CP and CPA groups, but were lower for the control group. CONCLUSIONS AND CLINICAL RELEVANCE: Dogs fed a bar with 37.4% RDCs and 25% protein immediately after exercise had increased blood nutrient concentrations for glycogen and protein synthesis, compared with control dogs.


Asunto(s)
Glucemia/metabolismo , Carbohidratos de la Dieta/administración & dosificación , Animales , Suplementos Dietéticos , Perros , Leucina/sangre , Condicionamiento Físico Animal , Periodo Posprandial , Xantófilas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA