Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7918): 294-300, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609624

RESUMEN

Understanding the nanoscopic chemical and structural changes that drive instabilities in emerging energy materials is essential for mitigating device degradation. The power conversion efficiency of halide perovskite photovoltaic devices has reached 25.7 per cent in single-junction and 29.8 per cent in tandem perovskite/silicon cells1,2, yet retaining such performance under continuous operation has remained elusive3. Here we develop a multimodal microscopy toolkit to reveal that in leading formamidinium-rich perovskite absorbers, nanoscale phase impurities, including hexagonal polytype and lead iodide inclusions, are not only traps for photoexcited carriers, which themselves reduce performance4,5, but also, through the same trapping process, are sites at which photochemical degradation of the absorber layer is seeded. We visualize illumination-induced structural changes at phase impurities associated with trap clusters, revealing that even trace amounts of these phases, otherwise undetected with bulk measurements, compromise device longevity. The type and distribution of these unwanted phase inclusions depends on the film composition and processing, with the presence of polytypes being most detrimental for film photo-stability. Importantly, we reveal that both performance losses and intrinsic degradation processes can be mitigated by modulating these defective phase impurities, and demonstrate that this requires careful tuning of local structural and chemical properties. This multimodal workflow to correlate the nanoscopic landscape of beam-sensitive energy materials will be applicable to a wide range of semiconductors for which a local picture of performance and operational stability has yet to be established.

2.
Nature ; 580(7803): 360-366, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296189

RESUMEN

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.

3.
Nat Mater ; 22(9): 1121-1127, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37414944

RESUMEN

Simultaneous transport and coupling of ionic and electronic charges is fundamental to electrochemical devices used in energy storage and conversion, neuromorphic computing and bioelectronics. While the mixed conductors enabling these technologies are widely used, the dynamic relationship between ionic and electronic transport is generally poorly understood, hindering the rational design of new materials. In semiconducting electrodes, electrochemical doping is assumed to be limited by motion of ions due to their large mass compared to electrons and/or holes. Here, we show that this basic assumption does not hold for conjugated polymer electrodes. Using operando optical microscopy, we reveal that electrochemical doping speeds in a state-of-the-art polythiophene can be limited by poor hole transport at low doping levels, leading to substantially slower switching speeds than expected. We show that the timescale of hole-limited doping can be controlled by the degree of microstructural heterogeneity, enabling the design of conjugated polymers with improved electrochemical performance.

4.
Nat Mater ; 20(6): 841-850, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33479526

RESUMEN

Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF3 using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF2 and CuF2. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F- sublattices and that of LiF is established. Initial lithiation of FeF3 forms FeF2 on the particle's surface, along with a cation-ordered and stacking-disordered phase, A-LixFeyF3, which is structurally related to α-/ß-LiMn2+Fe3+F6 and which topotactically transforms to B- and then C-LixFeyF3, before forming LiF and Fe. Lithiation of FeF2 and CuF2 results in a buffer phase between FeF2/CuF2 and LiF. The resulting principles will aid future developments of a wider range of isomorphic metal fluorides.

5.
Proc Natl Acad Sci U S A ; 116(2): 407-412, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30598434

RESUMEN

Zircon crystals from the Jack Hills, Western Australia, are one of the few surviving mineralogical records of Earth's first 500 million years and have been proposed to contain a paleomagnetic record of the Hadean geodynamo. A prerequisite for the preservation of Hadean magnetization is the presence of primary magnetic inclusions within pristine igneous zircon. To date no images of the magnetic recorders within ancient zircon have been presented. Here we use high-resolution transmission electron microscopy to demonstrate that all observed inclusions are secondary features formed via two distinct mechanisms. Magnetite is produced via a pipe-diffusion mechanism whereby iron diffuses into radiation-damaged zircon along the cores of dislocations and is precipitated inside nanopores and also during low-temperature recrystallization of radiation-damaged zircon in the presence of an aqueous fluid. Although these magnetites can be recognized as secondary using transmission electron microscopy, they otherwise occur in regions that are indistinguishable from pristine igneous zircon and carry remanent magnetization that postdates the crystallization age by at least several hundred million years. Without microscopic evidence ruling out secondary magnetite, the paleomagnetic case for a Hadean-Eoarchean geodynamo cannot yet been made.

6.
Proc Natl Acad Sci U S A ; 115(49): E11436-E11445, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30446616

RESUMEN

Meteorites contain a record of their thermal and magnetic history, written in the intergrowths of iron-rich and nickel-rich phases that formed during slow cooling. Of intense interest from a magnetic perspective is the "cloudy zone," a nanoscale intergrowth containing tetrataenite-a naturally occurring hard ferromagnetic mineral that has potential applications as a sustainable alternative to rare-earth permanent magnets. Here we use a combination of high-resolution electron diffraction, electron tomography, atom probe tomography (APT), and micromagnetic simulations to reveal the 3D architecture of the cloudy zone with subnanometer spatial resolution and model the mechanism of remanence acquisition during slow cooling on the meteorite parent body. Isolated islands of tetrataenite are embedded in a matrix of an ordered superstructure. The islands are arranged in clusters of three crystallographic variants, which control how magnetic information is encoded into the nanostructure. The cloudy zone acquires paleomagnetic remanence via a sequence of magnetic domain state transformations (vortex to two domain to single domain), driven by Fe-Ni ordering at 320 °C. Rather than remanence being recorded at different times at different positions throughout the cloudy zone, each subregion of the cloudy zone records a coherent snapshot of the magnetic field that was present at 320 °C. Only the coarse and intermediate regions of the cloudy zone are found to be suitable for paleomagnetic applications. The fine regions, on the other hand, have properties similar to those of rare-earth permanent magnets, providing potential routes to synthetic tetrataenite-based magnetic materials.

7.
Nano Lett ; 20(10): 7405-7412, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32915579

RESUMEN

Iron oxide nanorings have great promise for biomedical applications because of their magnetic vortex state, which endows them with a low remanent magnetization while retaining a large saturation magnetization. Here we use micromagnetic simulations to predict the exact shapes that can sustain magnetic vortices, using a toroidal model geometry with variable diameter, ring thickness, and ring eccentricity. Our model phase diagram is then compared with simulations of experimental geometries obtained by electron tomography. High axial eccentricity and low ring thickness are found to be key factors for forming vortex states and avoiding net-magnetized metastable states. We also find that while defects from a perfect toroidal geometry increase the stray field associated with the vortex state, they can also make the vortex state more energetically accessible. These results constitute an important step toward optimizing the magnetic behavior of toroidal iron oxide nanoparticles.

8.
Nano Lett ; 20(2): 1272-1279, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31944111

RESUMEN

Vibrational spectroscopies directly record details of bonding in materials, but spatially resolved methods have been limited to surface techniques for mapping functional groups at the nanoscale. Electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope presents a route to functional group analysis from nanoscale volumes using transmitted subnanometer electron probes. Here, we now use vibrational EELS to map distinct carboxylate and imidazolate linkers in a metal-organic framework (MOF) crystal-glass composite material. Domains <100 nm in size are observed using vibrational EELS, with recorded spatial resolution <15 nm at interfaces in the composite. This nanoscale functional group mapping is confirmed by correlated EELS at core ionization edges as well as X-ray energy dispersive spectroscopy for elemental mapping of the metal centers of the two constituent MOFs. These results present a complete nanoscale analysis of the building blocks of the MOF composite and establish spatially resolved functional group analysis using electron beam spectroscopy for crystalline and amorphous organic and metal-organic solids.

9.
J Am Chem Soc ; 142(30): 13081-13089, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32627544

RESUMEN

Defect engineering can enhance key properties of metal-organic frameworks (MOFs). Tailoring the distribution of defects, for example in correlated nanodomains, requires characterization across length scales. However, a critical nanoscale characterization gap has emerged between the bulk diffraction techniques used to detect defect nanodomains and the subnanometer imaging used to observe individual defects. Here, we demonstrate that the emerging technique of scanning electron diffraction (SED) can bridge this gap uniquely enabling both nanoscale crystallographic analysis and the low-dose formation of multiple diffraction contrast images for defect analysis in MOFs. We directly image defect nanodomains in the MOF UiO-66(Hf) over an area of ca. 1000 nm and with a spatial resolution ca. 5 nm to reveal domain morphology and distribution. Based on these observations, we suggest possible crystal growth processes underpinning synthetic control of defect nanodomains. We also identify likely dislocations and small angle grain boundaries, illustrating that SED could be a key technique in developing the potential for engineering the distribution of defects, or "microstructure", in functional MOF design.

10.
J Am Chem Soc ; 141(2): 1027-1034, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30582804

RESUMEN

Melt quenched metal-organic framework (MOF) glasses define a new category of glass, distinct from metallic, organic, and inorganic glasses, owing to the dominant role of metal-ligand coordination bonding. The mechanical properties of glasses in general are important given their application in protective coatings and display technologies, though little is known about MOF glasses in this respect. The experimental elucidation of key properties such as their scratch resistance has been limited by the lack of processing methodologies capable of producing bulk glass samples. Here, nanoindentation was used to investigate the Young's modulus and hardness of four melt-quenched glasses formed from zeolitic imidazolate frameworks (ZIF): agZIF-4, agZIF-62, agZIF-76, and agZIF-76-mbIm. The creep resistance of the melt-quenched glasses was studied via strain-rate jump (SRJ) tests and through constant load and hold (CLH) indentation creep experiments. Values for the strain-rate sensitivity were found to be close to those for other glassy polymers and Se-rich GeSe chalcogenide glasses. Vacuum hot-pressing of agZIF-62 resulted in an inhomogeneous bulk sample containing the glass and amorphous non-melt-quenched aZIF-62. Remelting and annealing, however, resulted in the fabrication of a transparent, bubble-free bulk specimen, which allowed the first scratch testing experiments to be performed on an MOF glass.

11.
J Am Chem Soc ; 141(39): 15641-15648, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491080

RESUMEN

Metal-organic framework crystal-glass composites (MOF-CGCs) are materials in which a crystalline MOF is dispersed within a MOF glass. In this work, we explore the room-temperature stabilization of the open-pore form of MIL-53(Al), usually observed at high temperature, which occurs upon encapsulation within a ZIF-62(Zn) MOF glass matrix. A series of MOF-CGCs containing different loadings of MIL-53(Al) were synthesized and characterized using X-ray diffraction and nuclear magnetic resonance spectroscopy. An upper limit of MIL-53(Al) that can be stabilized in the composite was determined for the first time. The nanostructure of the composites was probed using pair distribution function analysis and scanning transmission electron microscopy. Notably, the distribution and integrity of the crystalline component in a sample series were determined, and these findings were related to the MOF-CGC gas adsorption capacity in order to identify the optimal loading necessary for maximum CO2 sorption capacity.

12.
Nat Mater ; 17(2): 174-179, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29251723

RESUMEN

A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm3 (STP) cm-3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications.

13.
Nature ; 502(7469): 80-4, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24091976

RESUMEN

The remarkable optical properties of metal nanoparticles are governed by the excitation of localized surface plasmon resonances (LSPRs). The sensitivity of each LSPR mode, whose spatial distribution and resonant energy depend on the nanoparticle structure, composition and environment, has given rise to many potential photonic, optoelectronic, catalytic, photovoltaic, and gas- and bio-sensing applications. However, the precise interplay between the three-dimensional (3D) nanoparticle structure and the LSPRs is not always fully understood and a spectrally sensitive 3D imaging technique is needed to visualize the excitation on the nanometre scale. Here we show that 3D images related to LSPRs of an individual silver nanocube can be reconstructed through the application of electron energy-loss spectrum imaging, mapping the excitation across a range of orientations, with a novel combination of non-negative matrix factorization, compressed sensing and electron tomography. Our results extend the idea of substrate-mediated hybridization of dipolar and quadrupolar modes predicted by theory, simulations, and electron and optical spectroscopy, and provide experimental evidence of higher-energy mode hybridization. This work represents an advance both in the understanding of the optical response of noble-metal nanoparticles and in the probing, analysis and visualization of LSPRs.

14.
Angew Chem Int Ed Engl ; 58(26): 8724-8729, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31050138

RESUMEN

Controlling the structure sensitivity of catalyzed reactions over metals is central to developing atom-efficient chemical processes. Approaching the minimum ensemble size, the properties enter a non-scalable regime in which each atom counts. Almost all trends in this ultra-small frontier derive from surface science approaches using model systems, because of both synthetic and analytical challenges. Exploiting the unique coordination chemistry of carbon nitride, we discriminate through experiments and simulations the interplay between the geometry, electronic structure, and reactivity of palladium atoms, dimers, and trimers. Catalytic tests evidence application-dependent requirements of the active ensemble. In the semi-hydrogenation of alkynes, the nuclearity primarily impacts activity, whereas the selectivity and stability are affected in Suzuki coupling. This powerful approach will provide practical insights into the design of heterogeneous catalysts comprising well-defined numbers of atoms.

15.
J Am Chem Soc ; 140(51): 17862-17866, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30525554

RESUMEN

Microstructured metal-organic framework (MOF) glasses have been produced by combining two amorphous MOFs. However, the electronic structure of these materials has not been interrogated at the length scales of the chemical domains formed in these glasses. Here, we report a subwavelength spatially resolved physicochemical analysis of the electronic states at visible and UV energies in a blend of two zeolitic imidazolate frameworks (ZIFs), ZIF-4-Co and ZIF-62-Zn. By combining spectroscopy at visible and UV energies as well as at core ionization energies in electron energy loss spectroscopy in the scanning transmission electron microscope with density functional theory calculations, we show that domains less than 200 nm in size retain the electronic structure of the precursor crystalline ZIF phases. Prototypical signatures of coordination chemistry including d- d transitions in ZIF-4-Co are assigned and mapped with nanoscale precision.

16.
Langmuir ; 33(36): 8924-8932, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28810122

RESUMEN

Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on CrVI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

17.
Nanomedicine ; 13(2): 619-630, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27478107

RESUMEN

Amorphous magnesium-substituted calcium phosphate (AMCP) nanoparticles (75-150nm) form constitutively in large numbers in the mammalian gut. Collective evidence indicates that they trap and deliver luminal macromolecules to mucosal antigen presenting cells (APCs) and facilitate gut immune homeostasis. Here, we report on a synthetic mimetic of the endogenous AMCP and show that it has marked capacity to trap macromolecules during formation. Macromolecular capture into AMCP involved incorporation as shown by STEM tomography of the synthetic AMCP particle with 5nm ultra-fine iron (III) oxohydroxide. In vitro, organic cargo-loaded synthetic AMCP was taken up by APCs and tracked to lysosomal compartments. The AMCP itself did not regulate any gene, or modify any gene regulation by its cargo, based upon whole genome transcriptomic analyses. We conclude that synthetic AMCP can efficiently trap macromolecules and deliver them to APCs in a silent fashion, and may thus represent a new platform for antigen delivery.


Asunto(s)
Células Presentadoras de Antígenos , Sustancias Macromoleculares , Nanopartículas , Animales , Antígenos , Citoplasma
18.
Microsc Microanal ; 23(5): 951-966, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28893337

RESUMEN

Soft X-ray spectro-tomography provides three-dimensional (3D) chemical mapping based on natural X-ray absorption properties. Since radiation damage is intrinsic to X-ray absorption, it is important to find ways to maximize signal within a given dose. For tomography, using the smallest number of tilt series images that gives a faithful reconstruction is one such method. Compressed sensing (CS) methods have relatively recently been applied to tomographic reconstruction algorithms, providing faithful 3D reconstructions with a much smaller number of projection images than when conventional reconstruction methods are used. Here, CS is applied in the context of scanning transmission X-ray microscopy tomography. Reconstructions by weighted back-projection, the simultaneous iterative reconstruction technique, and CS are compared. The effects of varying tilt angle increment and angular range for the tomographic reconstructions are examined. Optimization of the regularization parameter in the CS reconstruction is explored and discussed. The comparisons show that CS can provide improved reconstruction fidelity relative to weighted back-projection and simultaneous iterative reconstruction techniques, with increasingly pronounced advantages as the angular sampling is reduced. In particular, missing wedge artifacts are significantly reduced and there is enhanced recovery of sharp edges. Examples of using CS for low-dose scanning transmission X-ray microscopy spectroscopic tomography are presented.

19.
Nano Lett ; 16(8): 5068-73, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27383904

RESUMEN

The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.

20.
Nano Lett ; 15(4): 2716-20, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25760234

RESUMEN

The chemical composition of core-shell nanoparticle clusters have been determined through principal component analysis (PCA) and independent component analysis (ICA) of an energy-dispersive X-ray (EDX) spectrum image (SI) acquired in a scanning transmission electron microscope (STEM). The method blindly decomposes the SI into three components, which are found to accurately represent the isolated and unmixed X-ray signals originating from the supporting carbon film, the shell, and the bimetallic core. The composition of the latter is verified by and is in excellent agreement with the separate quantification of bare bimetallic seed nanoparticles.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Difracción de Rayos X/métodos , Imagenología Tridimensional/métodos , Ensayo de Materiales/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA